Add map-electronic-component-part-to-fact evals #170
Merged
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Thank you for contributing an eval!♥️
🚨 Please make sure your PR follows these guidelines, failure to follow the guidelines below will result in the PR being closed automatically. Note that even if the criteria are met, that does not guarantee the PR will be merged nor GPT-4 access granted. 🚨
PLEASE READ THIS:
In order for a PR to be merged, it must fail on GPT-4. We are aware that right now, users do not have access, so you will not be able to tell if the eval fails or not. Please run your eval with GPT-3.5-Turbo, but keep in mind as we run the eval, if GPT-4 gets higher than 90% on the eval, we will likely reject since GPT-4 is already capable of completing the task.
We plan to roll out a way for users submitting evals to see the eval performance on GPT-4 soon. Stay tuned! Until then, you will not be able to see the eval performance on GPT-4. We encourage partial PR's with ~5-10 example that we can then run the evals on and share the results with you so you know how your eval does with GPT-4 before writing all 100 examples.
Eval details 📑
Eval name
map-electronic-component-part-to-fact
Eval description
This eval asks specific technical questions about electronic components. Answers can be found in PDF files on the open web, which are likely part of the training data.
What makes this a useful eval?
Lots of data in the training set is in hard to understand forms. This asks questions about relatively obscure PDF files that are older than 2021. The PDF files are scattered all over the open web, and consist of datasheets for electronic components. The information to answer the question is often within a table or diagram. Multiple parts of the document may need to be understood to find the correct answer.
Good performance on this eval shows that information can be extracted from non-trivial representations within the training set.
This also has a real world usecase: Good performance on this eval would be a requirement to build a tool to automatically suggest alternative parts for an application.
Criteria for a good eval ✅
Below are some of the criteria we look for in a good eval. In general, we are seeking cases where the model does not do a good job despite being capable of generating a good response (note that there are some things large language models cannot do, so those would not make good evals).
Your eval should be:
Basic
evals or theFact
Model-graded eval, or an exhaustive rubric for evaluating answers for theCriteria
Model-graded eval.If there is anything else that makes your eval worth including, please document it below.
Unique eval value
Eval structure 🏗️
Your eval should
evals/registry/data/{name}
evals/registry/evals/{name}.jsonl
(For now, we will only be approving evals that use one of the existing eval classes. You may still write custom eval classes for your own cases, and we may consider merging them in the future.)
Final checklist 👀
Submission agreement
By contributing to Evals, you are agreeing to make your evaluation logic and data under the same MIT license as this repository. You must have adequate rights to upload any data used in an Eval. OpenAI reserves the right to use this data in future service improvements to our product. Contributions to OpenAI Evals will be subject to our usual Usage Policies (https://platform.openai.com/docs/usage-policies).
Email address validation
If your submission is accepted, we will be granting GPT-4 access to a limited number of contributors. Access will be given to the email address associated with the merged pull request.
Limited availability acknowledgement
We know that you might be excited to contribute to OpenAI's mission, help improve our models, and gain access to GPT-4. However, due to the requirements mentioned above and high volume of submissions, we will not be able to accept all submissions and thus not grant everyone who opens a PR GPT-4 access. We know this is disappointing, but we hope to set the right expectation before you open this PR.
Submit eval
pip install pre-commit; pre-commit install
and have verified thatblack
,isort
, andautoflake
are running when I commit and pushFailure to fill out all required fields will result in the PR being closed.
Eval JSON data
Since we are using Git LFS, we are asking eval submitters to add in as many Eval Samples (at least 5) from their contribution here:
View evals in JSON
Eval