Skip to content

nanangarsyad/rootbeer1

 
 

Repository files navigation

#Rootbeer

The Rootbeer GPU Compiler lets you use GPUs from within Java. It is different than other Java/GPU solutions in that it is tailored for advanced usage to get the best raw performance.

ROOTBEER IS PRE-PRODUCTION BETA. IF ROOTBEER WORKS FOR YOU, PLEASE LET ME KNOW.

To get a speedup using rootbeer you need a simple kernel that calls few library methods and has at least O(N) computation per O(1) data.

GPU PROGRAMMING IS EXTREMELY HARD. EXPECT TO BE WORKING AT 3-5 SLOC/HOUR IN THIS ENVIRONMENT.

For the best performance, you should be using shared memory (NVIDIA term). Look at the CUDA Occupancy Calculator and plan out the thread count, shared memory size and register count to obtain 100% occupancy.

For examples such as the global synchronization primitive, you need explicit control over the fine-grained GPU setup and Rootbeer is the only system to date that can run a global sync without deadlock. Using this primitive with an HMM Learning example gave 102x speedup over a single core CPU using a Tesla C2050. HMM Learning has O(N^2T) time complexity (N=num_states and T=num_samples).

You can expect a 100x speedup from an optimized implementation by an experienced GPU developer per device and 400x for a chassis with 4-GPUs if the problem is compute bound rather than memory bound or IO bound.

Programming

Kernel Interface: Your code that will run on the GPU will implement the Kernel interface. You send data to the gpu by adding a field to the object implementing kernel. gpuMethod will access the data.

package org.trifort.rootbeer.runtime;

public interface Kernel {
  void gpuMethod();
}

###Simple Example: This simple example uses kernel lists and no thread config or context. Rootbeer will create a thread config and select the best device automatically. If you wish to use multiple GPUs you need to pass in a Context.

ScalarAddApp.java:
See the example

package org.trifort.rootbeer.examples.scalaradd;

import java.util.List;
import java.util.ArrayList;
import org.trifort.rootbeer.runtime.Kernel;
import org.trifort.rootbeer.runtime.Rootbeer;
import org.trifort.rootbeer.runtime.util.Stopwatch;

public class ScalarAddApp {

  public void multArray(int[] array){
    List<Kernel> tasks = new ArrayList<Kernel>();
    for(int index = 0; index < array.length; ++index){
      tasks.add(new ScalarAddKernel(array, index));
    }

    Rootbeer rootbeer = new Rootbeer();
    rootbeer.run(tasks);
  }

  private void printArray(String message, int[] array){
    for(int i = 0; i < array.length; ++i){
      System.out.println(message+" array["+i+"]: "+array[i]);
    }
  }

  public static void main(String[] args){
    ScalarAddApp app = new ScalarAddApp();
    int length = 10;
    int[] array = new int[length];
    for(int index = 0; index < array.length; ++index){
      array[index] = index;
    }

    app.printArray("start", array);
    app.multArray(array);
    app.printArray("end", array);
  }
}

ScalarAddKernel:

package org.trifort.rootbeer.examples.scalaradd;

import org.trifort.rootbeer.runtime.Kernel;

public class ScalarAddKernel implements Kernel {

  private int[] array;
  private int index;

  public ScalarAddKernel(int[] array, int index){
    this.array = array;
    this.index = index;
  }

  public void gpuMethod(){
    array[index] += 1;
  }
}

High Performance Example - Batcher's Even Odd Sort

See the example
See the slides

GPUSort.java

package org.trifort.rootbeer.sort;

import org.trifort.rootbeer.runtime.Rootbeer;
import org.trifort.rootbeer.runtime.GpuDevice;
import org.trifort.rootbeer.runtime.Context;
import org.trifort.rootbeer.runtime.ThreadConfig;
import org.trifort.rootbeer.runtime.StatsRow;
import org.trifort.rootbeer.runtime.CacheConfig;
import java.util.List;
import java.util.Arrays;
import java.util.Random;

public class GPUSort {

  private int[] newArray(int size){
    int[] ret = new int[size];

    for(int i = 0; i < size; ++i){
      ret[i] = i;
    }
    return ret;
  }

  public void checkSorted(int[] array, int outerIndex){
    for(int index = 0; index < array.length; ++index){
      if(array[index] != index){
        for(int index2 = 0; index2 < array.length; ++index2){
          System.out.println("array["+index2+"]: "+array[index2]);
        }
        throw new RuntimeException("not sorted: "+outerIndex);
      }
    }
  }

  public void fisherYates(int[] array)
  {
    Random random = new Random();
    for (int i = array.length - 1; i > 0; i--){
      int index = random.nextInt(i + 1);
      int a = array[index];
      array[index] = array[i];
      array[i] = a;
    }
  }

  public void sort(){
    //should have at least 192 threads per SM
    int size = 2048;
    int sizeBy2 = size / 2;
    //int numMultiProcessors = 14;
    //int blocksPerMultiProcessor = 512;
    int numMultiProcessors = 2;
    int blocksPerMultiProcessor = 256;
    int outerCount = numMultiProcessors*blocksPerMultiProcessor;
    int[][] array = new int[outerCount][];
    for(int i = 0; i < outerCount; ++i){
      array[i] = newArray(size);
    }

    Rootbeer rootbeer = new Rootbeer();
    List<GpuDevice> devices = rootbeer.getDevices();
    GpuDevice device0 = devices.get(0);
    //create a context with 4212880 bytes objectMemory.
    //you can leave the 4212880 missing at first to
    //use all available GPU memory. after you run you
    //can call context0.getRequiredMemory() to see
    //what value to enter here
    Context context0 = device0.createContext(4212880);
    //use more die area for shared memory instead of
    //cache. the shared memory is a software defined
    //cache that, if programmed properly, can perform
    //better than the hardware cache
    //see (CUDA Occupancy calculator)[https://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls]
    context0.setCacheConfig(CacheConfig.PREFER_SHARED);
    //wire thread config for throughput mode. after
    //calling buildState, the book-keeping information
    //will be cached in the JNI driver
    context0.setThreadConfig(sizeBy2, outerCount, outerCount * sizeBy2);
    //configure to use kernel templates. rather than
    //using kernel lists where each thread has a Kernel
    //object, there is only one kernel object (less memory copies)
    //when using kernel templates you need to differetiate
    //your data using thread/block indexes
    context0.setKernel(new GPUSortKernel(array));
    //cache the state and get ready for throughput mode
    context0.buildState();

    while(true){
      //randomize the array to be sorted
      for(int i = 0; i < outerCount; ++i){
        fisherYates(array[i]);
      }
      long gpuStart = System.currentTimeMillis();
      //run the cached throughput mode state.
      //the data now reachable from the only
      //GPUSortKernel is serialized to the GPU
      context0.run();
      long gpuStop = System.currentTimeMillis();
      long gpuTime = gpuStop - gpuStart;

      StatsRow row0 = context0.getStats();
      System.out.println("serialization_time: "+row0.getSerializationTime());
      System.out.println("execution_time: "+row0.getExecutionTime());
      System.out.println("deserialization_time: "+row0.getDeserializationTime());
      System.out.println("gpu_required_memory: "+context0.getRequiredMemory());
      System.out.println("gpu_time: "+gpuTime);

      for(int i = 0; i < outerCount; ++i){
        checkSorted(array[i], i);
        fisherYates(array[i]);
      }

      long cpuStart = System.currentTimeMillis();
      for(int i = 0; i < outerCount; ++i){
        Arrays.sort(array[i]);
      }
      long cpuStop = System.currentTimeMillis();
      long cpuTime = cpuStop - cpuStart;
      System.out.println("cpu_time: "+cpuTime);
      double ratio = (double) cpuTime / (double) gpuTime;
      System.out.println("ratio: "+ratio);
    }
    //context0.close();
  }

  public static void main(String[] args){
    GPUSort sorter = new GPUSort();
    while(true){
      sorter.sort();
    }
  }
}

GPUSortKernel.java

package org.trifort.rootbeer.sort;

import org.trifort.rootbeer.runtime.Kernel;
import org.trifort.rootbeer.runtime.RootbeerGpu;


public class GPUSortKernel implements Kernel {

  private int[][] arrays;

  public GPUSortKernel(int[][] arrays){
    this.arrays = arrays;
  }

  @Override
  public void gpuMethod(){
    int[] array = arrays[RootbeerGpu.getBlockIdxx()];
    int index1a = RootbeerGpu.getThreadIdxx() << 1;
    int index1b = index1a + 1;
    int index2a = index1a - 1;
    int index2b = index1a;
    int index1a_shared = index1a << 2;
    int index1b_shared = index1b << 2;
    int index2a_shared = index2a << 2;
    int index2b_shared = index2b << 2;

    RootbeerGpu.setSharedInteger(index1a_shared, array[index1a]);
    RootbeerGpu.setSharedInteger(index1b_shared, array[index1b]);
    //outer pass
    int arrayLength = array.length >> 1;
    for(int i = 0; i < arrayLength; ++i){
      int value1 = RootbeerGpu.getSharedInteger(index1a_shared);
      int value2 = RootbeerGpu.getSharedInteger(index1b_shared);
      int shared_value = value1;
      if(value2 < value1){
        shared_value = value2;
        RootbeerGpu.setSharedInteger(index1a_shared, value2);
        RootbeerGpu.setSharedInteger(index1b_shared, value1);
      }
      RootbeerGpu.syncthreads();
      if(index2a >= 0){
        value1 = RootbeerGpu.getSharedInteger(index2a_shared);
        //value2 = RootbeerGpu.getSharedInteger(index2b_shared);
        value2 = shared_value;
        if(value2 < value1){
          RootbeerGpu.setSharedInteger(index2a_shared, value2);
          RootbeerGpu.setSharedInteger(index2b_shared, value1);
        }
      }
      RootbeerGpu.syncthreads();
    }
    array[index1a] = RootbeerGpu.getSharedInteger(index1a_shared);
    array[index1b] = RootbeerGpu.getSharedInteger(index1b_shared);
  }
}

Compiling Rootbeer Enabled Projects

  1. Download the latest Rootbeer.jar from the releases
  2. Program using the Kernel, Rootbeer, GpuDevice and Context class.
  3. Compile your program normally with javac.
  4. Pack all the classes used into a single jar using pack
  5. Compile with Rootbeer to enable the GPU java -Xmx8g -jar Rootbeer.jar App.jar App-GPU.jar

Building Rootbeer from Source

  1. Clone the github repo to rootbeer1/
  2. cd rootbeer1/
  3. ant jar
  4. ./pack-rootbeer (linux) or ./pack-rootbeer.bat (windows)
  5. Use the Rootbeer.jar (not dist/Rootbeer1.jar)

Command Line Options

  • -runeasytests = run test suite to see if things are working
  • -runtest = run specific test case
  • -printdeviceinfo = print out information regarding your GPU
  • -maxrregcount = sent to CUDA compiler to limit register count
  • -noarraychecks = remove array out of bounds checks once you get your application to work
  • -nodoubles = you are telling rootbeer that there are no doubles and we can compile with older versions of CUDA
  • -norecursion = you are telling rootbeer that there are no recursions and we can compile with older versions of CUDA
  • -noexceptions = remove exception checking
  • -keepmains = keep main methods
  • -shared-mem-size = specify the shared memory size
  • -32bit = compile with 32bit
  • -64bit = compile with 64bit (if you are on a 64bit machine you will want to use just this)
  • -computecapability = specify the Compute Capability {sm_11,sm_12,sm_20,sm_21,sm_30,sm_35} (default ALL)

Once you get started, you will find you want to use a combination of -maxregcount, -shared-mem-size and the thread count sent to the GPU to control occupancy.

Debugging

You can use System.out.println in a limited way while on the GPU. Printing in Java requires StringBuilder support to concatenate strings/integers/etc. Rootbeer has a custom StringBuilder runtime (written with great improvements from Martin Illecker) that allows most normal printlns to work.

Since you are running on a parallel GPU, it is nice to print from a single thread

public void gpuMethod(){
  if(RootbeerGpu.getThreadIdxx() == 0 && RootbeerGpu.getBlockIdxx() == 0){
    System.out.println("hello world");
  }
}

Once you are done debugging, you can get a performance improvement by disabling exceptions and array bounds checks (see command line options).

Multi-GPUs (lightly tested)

List<GpuDevice> devices = rootbeer.getDevices();
GpuDevice device0 = devices.get(0);
GpuDevice device1 = devices.get(1);

Context context0 = device0.createContext(4212880);
Context context1 = device1.createContext(4212880);

context0.setCacheConfig(CacheConfig.PREFER_SHARED);
context`.setCacheConfig(CacheConfig.PREFER_SHARED);

context0.setThreadConfig(sizeBy2, outerCount, outerCount * sizeBy2);
context1.setThreadConfig(sizeBy2, outerCount, outerCount * sizeBy2);

context0.setKernel(new GPUSortKernel(array0));
context1.setKernel(new GPUSortKernel(array1));

context0.buildState();
context1.buildState();

while(true){
  //run using two gpus without blocking the current thread
  GpuFuture future0 = context0.runAsync();
  GpuFuture future1 = context1.runAsync();
  future1.take();
  future2.take();
}

RootbeerGpu Builtins (compiles directly to CUDA statements)

public class RootbeerGpu (){
    //returns true if on the gpu
    public static boolean isOnGpu();

    //returns blockIdx.x * blockDim.x + threadIdx.x
    public static int getThreadId();

    //returns threadIdx.x
    public static int getThreadIdxx();

    //returns blockIdx.x
    public static int getBlockIdxx();

    //returns blockDim.x
    public static int getBlockDimx();

    //returns gridDim.x;
    public static long getGridDimx();

    //__syncthreads
    public static void syncthreads();

    //__threadfence
    public static void threadfence();

    //__threadfence_block
    public static void threadfenceBlock();

    //__threadfence_system
    public static void threadfenceSystem();

    //given an object, returns the long handle
    //in GPU memory
    public static long getRef(Object obj);

    //get/set byte in shared memory. requires 1 byte.
    //index is byte offset into shared memory
    public static byte getSharedByte(int index);
    public static void setSharedByte(int index, byte value);

    //get/set char in shared memory. requires 2 bytes.
    //index is byte offset into shared memory
    public static char getSharedChar(int index);
    public static void setSharedChar(int index, char value);

    //get/set boolean in shared memory. requires 1 byte.
    //index is byte offset into shared memory
    public static boolean getSharedBoolean(int index);
    public static void setSharedBoolean(int index, boolean value);

    //get/set short in shared memory. requires 2 bytes.
    //index is byte offset into shared memory
    public static short getSharedShort(int index);
    public static void setSharedShort(int index, short value);

    //get/set integer in shared memory. requires 4 bytes.
    //index is byte offset into shared memory
    public static int getSharedInteger(int index);
    public static void setSharedInteger(int index, int value);

    //get/set long in shared memory. requires 8 bytes.
    //index is byte offset into shared memory
    public static long getSharedLong(int index);
    public static void setSharedLong(int index, long value);

    //get/set float in shared memory. requires 4 bytes.
    //index is byte offset into shared memory
    public static float getSharedFloat(int index);
    public static void setSharedFloat(int index, float value);

    //get/set double in shared memory. requires 8 bytes.
    //index is byte offset into shared memory
    public static double getSharedDouble(int index);
    public static void setSharedDouble(int index, double value);

    //atomic add value to array at index
    public static void atomicAddGlobal(int[] array, int index, int value);
    public static void atomicAddGlobal(long[] array, int index, long value);
    public static void atomicAddGlobal(float[] array, int index, float value);

    //atomic sub value from array at index
    public static void atomicSubGlobal(int[] array, int index, int value);

    //atomic exch value at index in array. old is retured
    public static int atomicExchGlobal(int[] array, int index, int value);
    public static long atomicExchGlobal(long[] array, int index, long value);
    public static float atomicExchGlobal(float[] array, int index, float value);

    //from CUDA programming guide: "reads the 32-bit word old located at the
    //address address in global memory, computes the minimum of old and val,
    //and stores the result back to memory at the same address.
    //These three operations are performed in one atomic transaction.
    //The function returns old."
    public static int atomicMinGlobal(int[] array, int index, int value);

    //from CUDA programming guide: "reads the 32-bit word old located at the
    //address address in global memory, computes the maximum of old and val,
    //and stores the result back to memory at the same address.
    //These three operations are performed in one atomic transaction.
    //The function returns old."
    public static int atomicMaxGlobal(int[] array, int index, int value);

    //from CUDA programming guide: "reads the 32-bit word old located at the
    //address address in global memory, computes (old == compare ? val : old),
    //and stores the result back to memory at the same address.
    //These three operations are performed in one atomic transaction. The function
    //returns old (Compare And Swap)."
    public static int atomicCASGlobal(int[] array, int index, int compare, int value);

    //from CUDA programming guide: "reads the 32-bit word old located at the
    //address address in global memory, computes (old & val), and stores the
    //result back to memory at the same address.
    //These three operations are performed in one atomic transaction.
    //The function returns old."
    public static int atomicAndGlobal(int[] array, int index, int value);

    //from CUDA programming guide: "reads the 32-bit word old located at the
    //address address in global memory, computes (old | val), and stores the
    //result back to memory at the same address.
    //These three operations are performed in one atomic transaction.
    //The function returns old."
    public static int atomicOrGlobal(int[] array, int index, int value);

    //from CUDA programming guide: "reads the 32-bit word old located at the
    //address address in global memory, computes (old ^ val), and stores the
    //result back to memory at the same address.
    //These three operations are performed in one atomic transaction.
    //The function returns old."
    public static int atomicXorGlobal(int[] array, int index, int value);
}

Viewing Code Generation

CUDA code is generated and placed in ~/.rootbeer/generated.cu

You can use this to find out the register / shared memory usage

$/usr/local/cuda/bin/nvcc --ptxas-options=-v -arch sm_20 ~/.rootbeer/generated.cu

CUDA Setup

You need to have the CUDA Toolkit and CUDA Driver installed to use Rootbeer. Download it from https://www.nvidia.com/content/cuda/cuda-downloads.html

License

Rootbeer is licensed under the MIT license. If you use rootbeer for any reason, please star the repository and email me your usage and comments. I am preparing my dissertation now.

Examples

See here for a variety of examples.

About

Rootbeer GPU Compiler - Java GPU Programming

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 88.4%
  • C 10.6%
  • Shell 0.5%
  • PowerShell 0.2%
  • Batchfile 0.1%
  • GAP 0.1%
  • Ruby 0.1%