Skip to content

mroviranavarro/Poroviscoelastic_Tides

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Poroviscoelastic_Tides

AUTHOR: M. Rovira-Navarro.
DATE: October 2021.
CODE: Code accompanying the paper: "The Tides of Enceladus' Core". It can be used to obtain the viscoelastic or poroviscoelastic tidal response of a moon due to eccentricity tides.
The following information is given here:

  1. INCLUDED FUNCTIONS: Functions included, their use, input and outputs
  2. HOW TO USE? Description of how the code is normally used.
  3. EXAMPLES: Description of the examples accompanying the code.

INCLUDED FUNCTIONS

tidal.m

Description: Propagate the solution from the center to the surface
Inputs:
Required

  • l: spherical harmonic degree.
  • R: vector containing the upper boundary of each layer.
  • rho: vector containing the average density of each layer.
  • rhof: vector containing the fluid average density of each layer.
  • mu: vector containing the shear modulus of each layer.
  • Ks: vector containing the solid bulk modulus of each layer.
  • etas: vector containing the viscosity of the solid.
  • alpha: vector conatining alpha.
  • poro: vector containing porosity for each layer.
  • k_perm: vector containing permeability for each layer.
  • etaf: vector containing fluid viscosity for each layer.
  • Kf: vector containing the fluid bulk modulus of each layer.
  • liquid: vector stating if layer is fluid (1) or not (0). Here used to indicate the model has a fluid core.
  • omega: forcing frequency.

Optional

  • radial_points: number of radial points
  • resample: To solve the PDE it is good to have a lot of points in the radial direction, but then to build the solution u need to deal with big matrices that slows things down. In such case the resample option is useful. radial_points X lat_points X lon_points
  • pressure_BC: use pressure boundary condition instead of constant flux
  • strain_BC: use prescribed strain as in Liao et al. 2020
  • print_results: print some results on the screen solution at the surface, Love numbers and y plots
  • self_gravity: (1) if self-gravity is used in the momentum equation, (0) if not
  • tidal_fluid: (1) if tidal potential affects the fluid, (0) if not
  • gravity_on: turn gravity on (1) and off (0). Default 1

Outputs

  • y(1:8,1:nrr,1:Nlayers): solution vector for each layer, y functions are given in Appendix A
    • y1: normal displacement
    • y2: tangential displacements
    • y3: normal stress
    • y4: tangential stress
    • y5: perturbing potential
    • y6: potential stress
    • y7: pore pressure
    • y8: radial flux
  • r: radial points where solution is obtained

tidal_ocean.m

Description: Propagate the solution from the core to the surface but with the possibility of a subsurface ocean

Inputs:
Required

  • l: spherical harmonic degree
  • R: vector containing the upper boundary of each layer
  • rho: vector containing the average density of each layer
  • rhof: vector containing the fluid average density of each layer
  • mu: vector containing the shear modulus of each layer
  • Ks: vector containing the solid bulk modulus of each layer
  • etas: vector containing the viscosity of the solid
  • alpha: vector conatining alpha
  • poro: vector containing porosity for each layer
  • k_perm: vector containing permeability for each layer
  • etaf: vector containing fluid viscosity for each layer
  • Kf: vector containing the fluid bulk modulus of each layer
  • liquid: vector stating if layer is fluid (1) or not (0). Here used to indicate the model has a fluid core, or a subsurface oceam
  • omega: forcing frequency

Optional

  • radial_points: number of radial points
  • resample: To solve the PDE it is good to have a lot of points in the radial direction, but then to build the solution u need to deal with big matrices that slows things down. In such case the resample option is useful.
  • pressure_BC: use pressure boundary condition instead of constant flux
  • strain_BC: use strain as boundary condition as in Liao et al. 2020
  • print_results: print some results on the screen solution at the surface, love numbers and y plots
  • self_gravity: (1) if self-gravity is used in the momentum equation, (0) if not
  • tidal_fluid: (1) if tidal potential affects the fluid, (0) if not
  • gravity_on: turn gravity on (1) and off (0). Default 1

Outputs

  • y(1:8,1:nrr,1:Nlayers): solution vector for each layer, y functions are given in Appendix A
    • y1: normal displacement
    • y2: tangential displacements
    • y3: normal stress
    • y4: tangential stress
    • y5: perturbing potential
    • y6: potential stress
    • y7: pore pressure
    • y8: radial flux
  • r: radial points where solution is obtained

propagation_matrix_porosity.m

Description: Compute the propagation matrix for the poroviscoelastic normal mode problem (Eq. (B1))

Inputs:

  • lin: spherical harmonic degree
  • rL: radial position
  • rhoL: average density
  • rhofL: fluid density
  • muL: shear modulus
  • lambdaL: Lame parameter
  • KsL: solid bulk modulus
  • KuL: undrained bulk modulus
  • KdL: drained bulk modulus
  • KfL: fluid bulk modulus
  • alphaL: alpha
  • poroL: porosity
  • k_perm2L: permeability/viscosity
  • gL: gravity
  • omega: forcing frequency
  • self_gravity: (1) if self-gravity is used in the momentum equation, (0) if not
  • tidal_fluid: (1) if tidal potential affects the fluid, (0) if not

Outputs:

  • Y: Propagation matrix

propagation_matrix_ocean.m

Description: Compute the propagation matrix for the ocean layer (Eq. (B2))
Inputs:

  • lin: spherical harmonic degree
  • rL: radial position
  • rhoL: density of the mantle
  • gL: gravity Outputs:
  • Y: Propagation matrix

build_solution.m

Description: Given the solution vector y(r), compute the solution in a colat-lon-r grid for a given order and degree (see Appendix C)

Inputs:
Required

  • y: solution vector y(1:8,1:nrr,1:Nlayers)
  • r: radial points corresponding to y(1:8,1:nrr,1:Nlayers)
  • rhof: fluid density
  • rhos: solid density
  • Ks: bulk modulus of the solid
  • Kf: bulk modulus of the fluid
  • mu: shear modulus of the solid
  • etas: viscosity of the solid
  • etaf: viscosity of the fluid
  • liquid: 1 if layer is liquid
  • k_perm: permeability
  • w_moon: forcing frequency of the moon
  • alpha: Biot constant
  • poro: porosity
  • l: degree of the tidal forcing
  • m: order of the tidal forcing: %0,-2 or 2.

Optional

  • tidal_fluid: (1) if tides affect the fluid, (0) if not.
  • lat_points: number of points used in the latitide,longitude grid. Default 70

Outputs:

  • colat: colatitude where solution is given
  • lon: longitudes where solution is given
  • rr: radial points where solution is returned
  • displacements: displacement vector
    • displacements(icolat,ilon,ir,1): radial component of the displacement
    • displacements(icolat,ilon,ir,2): latitudinal component of the
    • displacement
    • displacements(icolat,ilon,ir,3): longitudinal component of the diplacement
  • flux: flux vector
    • flux(icolat,ilon,ir,1): radial component of the flux
    • flux(icolat,ilon,ir,2): latitudinal component of the flux
    • flux(icolat,ilon,ir,3): longitudinal component of the flux
  • stress:
    • stress(icolat,ilon,ir,1)=\sigma_r_r;
    • stress(icolat,ilon,ir,2)=\sigma_theta_theta;
    • stress(icolat,ilon,ir,3)=\sigma_phi_phi;
    • stress(icolat,ilon,ir,4)=\sigma_r_theta;
    • stress(icolat,ilon,ir,5)=\sigma_r_phi;
    • stress(icolat,ilon,ir,6)=\sigma_theta_phi;
  • strain: strain tensor
    • strain(icolat,ilon,ir,1)=\epsilon_r_r;
    • strain(icolat,ilon,ir,2)=\epsilon_theta_theta;
    • strain(icolat,ilon,ir,3)=\epsilon_phi_phi;
    • strain(icolat,ilon,ir,4)=\epsilon_r_theta;
    • strain(icolat,ilon,ir,5)=\epsilon_r_phi;
    • strain(icolat,ilon,ir,6)=\epsilon_theta_phi;
  • gravpot: perturbing gravitational potential, gravpot(icolat,ilon,ir,1)
  • p_fluid: fluid pore pressure, p_fluid(icolat,ilon,ir,1)
  • C_fluid: variation of fluid content, C_fluid(icolat,ilon,ir,1)
  • varargout can be used to get some extra outputs
    • varargout{1}: porosity change
    • varargout{2}: divergence of the displacements
    • varargout{3}: divergence of the flux

compute_energy.m

Description: Given the strain, stress, variation of fluid content and pore pressure compute energy dissipated.
Inputs:

  • strain: strain tensor
    • strain(icolat,ilon,ir,1)=\epsilon_r_r;
    • strain(icolat,ilon,ir,2)=\epsilon_theta_theta;
    • strain(icolat,ilon,ir,3)=\epsilon_phi_phi;
    • strain(icolat,ilon,ir,4)=\epsilon_r_theta;
    • strain(icolat,ilon,ir,5)=\epsilon_r_phi;
    • strain(icolat,ilon,ir,6)=\epsilon_theta_phi;
  • stress: stress(icolat,ilon,ir,1)=\sigma_r_r;
    • stress(icolat,ilon,ir,2)=\sigma_theta_theta;
    • stress(icolat,ilon,ir,3)=\sigma_phi_phi;
    • stress(icolat,ilon,ir,4)=\sigma_r_theta;
    • stress(icolat,ilon,ir,5)=\sigma_r_phi;
    • stress(icolat,ilon,ir,6)=\sigma_theta_phi;
  • flux: flux vector
    • flux(icolat,ilon,ir,1): radial component of the flux
    • flux(icolat,ilon,ir,2): latitudinal component of the flux
    • flux(icolat,ilon,ir,3): longitudinal component of the flux
  • p_fluid: fluid pore pressure, p_fluid(icolat,ilon,ir,1)
  • C_fluid: variation of fluid content, C_fluid(icolat,ilon,ir,1)
  • omega: forcing frequency
  • etaf: viscosity of the fluid
  • k_perm: permeability

Outputs:

  • energy_solid(icolat,ilon,ir): volumetric energy dissipated in the solid matrix, computed using Eq. (19a)
  • energy_solid_pore(icolat,ilon,ir): energy dissipated in the solid due to pore pressure, Eq. (19a) term with pressure
  • energy_fluid(icolat,ilon,ir,1): energy dissipated in due to Darcy's flow, computed using Eq. (19b)
  • energy_solid_surface energy_solid_surface(icolat,ilon): energy dissipated in the solid matrix integrated radially
  • energy_solid_pore_surface(icolat,ilon): energy dissipated in the solid due to pore pressure integrated radially
  • energy_fluid_surface(icolat,ilon): energy dissipated in due to Darcy's flow integrated radially
  • energy_solid_total: Total energy dissipated in the solid integrated
  • energy_fluid_total: Total energy dissipated in the fluid

HOW TO USE?

  1. Define interior model
  2. Obtain radial functions using tidal.m or tidal_ocean
  3. Obtain the complex fields a(colat,lon,r)
  4. Compute tidal dissipation

EXAMPLES

The following example scripts are included

Europa.m:

Example to compute the tidal response of a viscoelastic Europa. The interior model of Europa is given by that of Beuthe, 2013 "Spatial patterns of tidal dissipation" https://doi.org/10.1016/j.icarus.2012.11.020 We use the interior structure given in Table 5

Io.m

Example to compute the tidal response of a viscoelastic Io.
The interior model of Io corresponds to models A and B of Steinke et al. 2020. https://doi.org/10.1016/j.icarus.2019.05.001.

Enceladus_Only_Core.m

Example to compute the proviscoelastic response of Enceladus. We consider the model of Liao et al. 2020: https://doi.org/10.1029/2019JE006209. In such case the boundary conditions are given by Eq. (A16)

Enceladus.m

Example to compute the proviscoelastic response of Enceladus.
Interior model parameters given in Table 1 of the paper