Authors: Yanting Teng
ml_toric_code is the code base for our paper [Classifying topological neural network quantum states via diffusion maps][arXiv link to be added] The code base is implemented in JAX.
- To run the variational Monte Carlo component, see the demo notebook
Optimization_demo.ipynb
. - For visualizing the dataset linked here , see
DM_data.ipynb
.
The experiments are run on FASRC Cannon cluster at Harvard University. It is set up with config
files in exp_cluster/configs/
folder. To generate and characterize the datasets, follow these steps:
- Optimize for intial ``seeds''
${\Lambda^0}$ at various field valuess$h$ (specified inconfig_opt.py
)
sbatch opt_v1.slurm.sh
- Estimate properties of the optimized states
e.g. for the optimized states with the tracker id 10331255 usingconfig_opt_est_v1_10331255
:
sbatch opt_est_v1.slurm.sh
- Generate ensembles for each state in ``seeds''
e.g. to generate the ensembles the tracker id 10910143 using
config_ens_v2_10910143.py
:
sbatch ens_v2.slurm.sh
- Estimate properties of the states in ensembles
e.g. use
config_est_ens.py
sbatch est_ens.slurm.sh
- Perform dimensional reduction of the dataset using
diffusion_maps
module. This is done in a colab notebook. Some examples of diffusion map spectra are inDM_data.ipynb
.