LLM Scraper is a TypeScript library that allows you to extract structured data from any webpage using LLMs.
Important
Code-generation is now supported in LLM Scraper.
Tip
Under the hood, it uses function calling to convert pages to structured data. You can find more about this approach here.
- Supports Local (Ollama, GGUF), OpenAI, Vercel AI SDK Providers
- Schemas defined with Zod
- Full type-safety with TypeScript
- Based on Playwright framework
- Streaming objects
- NEW Code-generation
- Supports 4 formatting modes:
html
for loading raw HTMLmarkdown
for loading markdowntext
for loading extracted text (using Readability.js)image
for loading a screenshot (multi-modal only)
Make sure to give it a star!
-
Install the required dependencies from npm:
npm i zod playwright llm-scraper
-
Initialize your LLM:
OpenAI
npm i @ai-sdk/openai
import { openai } from '@ai-sdk/openai' const llm = openai.chat('gpt-4o')
Groq
npm i @ai-sdk/openai
import { createOpenAI } from '@ai-sdk/openai' const groq = createOpenAI({ baseURL: 'https://api.groq.com/openai/v1', apiKey: process.env.GROQ_API_KEY, }) const llm = groq('llama3-8b-8192')
Ollama
npm i ollama-ai-provider
import { ollama } from 'ollama-ai-provider' const llm = ollama('llama3')
GGUF
import { LlamaModel } from 'node-llama-cpp' const llm = new LlamaModel({ modelPath: 'model.gguf' })
-
Create a new scraper instance provided with the llm:
import LLMScraper from 'llm-scraper' const scraper = new LLMScraper(llm)
In this example, we're extracting top stories from HackerNews:
import { chromium } from 'playwright'
import { z } from 'zod'
import { openai } from '@ai-sdk/openai'
import LLMScraper from 'llm-scraper'
// Launch a browser instance
const browser = await chromium.launch()
// Initialize LLM provider
const llm = openai.chat('gpt-4o')
// Create a new LLMScraper
const scraper = new LLMScraper(llm)
// Open new page
const page = await browser.newPage()
await page.goto('https://news.ycombinator.com')
// Define schema to extract contents into
const schema = z.object({
top: z
.array(
z.object({
title: z.string(),
points: z.number(),
by: z.string(),
commentsURL: z.string(),
})
)
.length(5)
.describe('Top 5 stories on Hacker News'),
})
// Run the scraper
const { data } = await scraper.run(page, schema, {
format: 'html',
})
// Show the result from LLM
console.log(data.top)
await page.close()
await browser.close()
Replace your run
function with stream
to get a partial object stream (Vercel AI SDK only).
// Run the scraper in streaming mode
const { stream } = await scraper.stream(page, schema)
// Stream the result from LLM
for await (const data of stream) {
console.log(data.top)
}