- DP-GEN Manual
DP-GEN (Deep Generator) is a software written in Python, delicately designed to generate a deep learning based model of interatomic potential energy and force field. DP-GEN is dependent on DeepMD-kit. With highly scalable interface with common softwares for molecular simulation, DP-GEN is capable to automatically prepare scripts and maintain job queues on HPC machines (High Performance Cluster) and analyze results.
If you use this software in any publication, please cite:
Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Computer Physics Communications, 2020, 107206.
- Accurate and efficient: DP-GEN is capable to sample more than tens of million structures and select only a few for first principles calculation. DP-GEN will finally obtain a uniformly accurate model.
- User-friendly and automatic: Users may install and run DP-GEN easily. Once succusefully running, DP-GEN can dispatch and handle all jobs on HPCs, and thus there's no need for any personal effort.
- Highly scalable: With modularized code structures, users and developers can easily extend DP-GEN for their most relevant needs. DP-GEN currently supports for HPC systems (Slurm, PBS, LSF and cloud machines ), Deep Potential interface with DeePMD-kit, MD interface with LAMMPS, Gromacs and ab-initio calculation interface with VASP, PWSCF, CP2K, SIESTA and Gaussian, Abacus, PWMAT, etc . We're sincerely welcome and embraced to users' contributions, with more possibilities and cases to use DP-GEN.
-
dpgen:
-
data: source codes for preparing initial data of bulk and surf systems.
-
generator: source codes for main process of deep generator.
-
auto_test : source code for undertaking materials property analysis.
-
remote and dispatcher : source code for automatically submiting scripts,maintaining job queues and collecting results. Notice this part hase been integrated into dpdispatcher
-
database : source code for collecting data generated by DP-GEN and interface with database.
-
-
examples : providing example JSON files.
-
tests : unittest tools for developers.
One can easily run DP-GEN with :
dpgen TASK PARAM MACHINE
where TASK is the key word, PARAM and MACHINE are both JSON files.
Options for TASK:
init_bulk
: Generating initial data for bulk systems.init_surf
: Generating initial data for surface systems.run
: Main process of Deep Generator.test
: Auto-test for Deep Potential.db
: Collecting data from DP-GEN.
Here are examples you can refer to. You should make sure that provide a correct JSON file. You can use following command to check your JSON file.
import json
#Specify machine parameters in machine.json
json.load(open("machine.json"))
One can download the source code of dpgen by
git clone https://github.com/deepmodeling/dpgen.git
then you may install DP-GEN easily by:
cd dpgen
pip install --user .
With this command, the dpgen executable is install to $HOME/.local/bin/dpgen
. You may want to export the PATH
by
export PATH=$HOME/.local/bin:$PATH
To test if the installation is successful, you may execute
dpgen -h
You may prepare initial data for bulk systems with VASP by:
dpgen init_bulk PARAM [MACHINE]
The MACHINE configure file is optional. If this parameter exists, then the optimization tasks or MD tasks will be submitted automatically according to MACHINE.json.
Basically init_bulk
can be devided into four parts , denoted as stages
in PARAM
:
- Relax in folder
00.place_ele
- Pertub and scale in folder
01.scale_pert
- Run a shor AIMD in folder
02.md
- Collect data in folder
02.md
.
All stages must be in order. One doesn't need to run all stages. For example, you may run stage 1 and 2, generating supercells as starting point of exploration in dpgen run
.
If MACHINE is None, there should be only one stage in stages. Corresponding tasks will be generated, but user's intervention should be involved in, to manunally run the scripts.
Following is an example for PARAM
, which generates data from a typical structure hcp.
{
"stages" : [1,2,3,4],
"cell_type": "hcp",
"latt": 4.479,
"super_cell": [2, 2, 2],
"elements": ["Mg"],
"potcars": ["....../POTCAR"],
"relax_incar": "....../INCAR_metal_rlx",
"md_incar" : "....../INCAR_metal_md",
"scale": [1.00],
"skip_relax": false,
"pert_numb": 2,
"md_nstep" : 5,
"pert_box": 0.03,
"pert_atom": 0.01,
"coll_ndata": 5000,
"type_map" : [ "Mg", "Al"],
"_comment": "that's all"
}
If you want to specify a structure as starting point for init_bulk
, you may set in PARAM
as follows.
"from_poscar": true,
"from_poscar_path": "....../C_mp-47_conventional.POSCAR",
init_bulk
support both VASP and ABACUS for first-principle calculation. You can choose the software by specifying the key init_fp_style
. If init_fp_style
is not specified, the default software will be VASP.
When using ABACUS for init_fp_style
, the keys of the paths of INPUT
files for relaxation and MD simulations are the same as INCAR
for VASP, which are relax_incar
and md_incar
respectively. You have to additionally specify relax_kspacing
and md_kspacing
for k points spacing, and dpgen will automatically generate KPT
files according to them. You may also use relax_kpt
and md_kpt
instead of them for the relative path for KPT
files of relaxation and MD simulations. However, either relax_kspacing
and md_kspacing
, or relax_kpt
and md_kpt
is needed. If from_poscar
is set to false
, you have to specify atom_masses
in the same order as elements
.
The following table gives explicit descriptions on keys in PARAM
.
The bold notation of key (such as Elements) means that it's a necessary key.
Key | Type | Example | Discription |
---|---|---|---|
stages | List of Integer | [1,2,3,4] | Stages for init_bulk |
Elements | List of String | ["Mg"] | Atom types |
cell_type | String | "hcp" | Specifying which typical structure to be generated. Options include fcc, hcp, bcc, sc, diamond. |
latt | Float | 4.479 | Lattice constant for single cell. |
from_poscar | Boolean | True | Deciding whether to use a given poscar as the beginning of relaxation. If it's true, keys (cell_type , latt ) will be aborted. Otherwise, these two keys are necessary. |
from_poscar_path | String | "....../C_mp-47_conventional.POSCAR" | Path of POSCAR for VASP or STRU for ABACUS. Necessary if from_poscar is true. |
relax_incar | String | "....../INCAR" | Path of INCAR for VASP or INPUT for ABACUS for relaxation in VASP. Necessary if stages include 1. |
md_incar | String | "....../INCAR" | Path of INCAR for VASP or INPUT for ABACUS for MD in VASP. Necessary if stages include 3. |
scale | List of float | [0.980, 1.000, 1.020] | Scales for transforming cells. |
skip_relax | Boolean | False | If it's true, you may directly run stage 2 (pertub and scale) using an unrelaxed POSCAR. |
pert_numb | Integer | 30 | Number of pertubations for each POSCAR. |
pert_box | Float | 0.03 | Percentage of Perturbation for cells. |
pert_atom | Float | 0.01 | Pertubation of each atoms (Angstrom). |
md_nstep | Integer | 10 | Steps of AIMD in stage 3. If it's not equal to settings via NSW in md_incar , DP-GEN will follow NSW . |
coll_ndata | Integer | 5000 | Maximal number of collected data. |
type_map | List | [ "Mg", "Al"] | The indices of elements in deepmd formats will be set in this order. |
init_fp_style | String | "ABACUS" or "VASP" | First-principle software. If this key is abscent, the default value will be "VASP". |
relax_kpt | String | "....../KPT" | Path of KPT file for relaxation in stage 1. Only useful if init_fp_style is "ABACUS". |
relax_kspacing | Integer or List of 3 integers | 10 | kspacing parameter for relaxation in stage 1. Only useful if init_fp_style is "ABACUS". |
md_kpt | String | "....../KPT" | Path of KPT file for MD simulations in stage 3. Only useful if init_fp_style is "ABACUS". |
md_kspacing | Integer or List of 3 integers | 10 | kspacing parameter for MD simulations in stage 3. Only useful if init_fp_style is "ABACUS". |
atom_masses | List of float | [24] | List of atomic masses of elements. The order should be the same as Elements . Only useful if init_fp_style is "ABACUS". |
You may prepare initial data for surface systems with VASP by:
dpgen init_surf PARAM [MACHINE]
The MACHINE configure file is optional. If this parameter exists, then the optimization tasks or MD tasks will be submitted automatically according to MACHINE.json.
Basically init_surf
can be devided into two parts , denoted as stages
in PARAM
:
- Build specific surface in folder
00.place_ele
- Pertub and scale in folder
01.scale_pert
All stages must be in order.
Following is an example for PARAM
, which generates data from a typical structure hcp.
{
"stages": [
1,
2
],
"cell_type": "fcc",
"latt": 4.034,
"super_cell": [
2,
2,
2
],
"layer_numb": 3,
"vacuum_max": 9,
"vacuum_resol": [
0.5,
1
],
"mid_point": 4.0,
"millers": [
[
1,
0,
0
],
[
1,
1,
0
],
[
1,
1,
1
]
],
"elements": [
"Al"
],
"potcars": [
"....../POTCAR"
],
"relax_incar": "....../INCAR_metal_rlx_low",
"scale": [
1.0
],
"skip_relax": true,
"pert_numb": 2,
"pert_box": 0.03,
"pert_atom": 0.01,
"_comment": "that's all"
}
Another example is from_poscar
method. Here you need to specify the POSCAR file.
{
"stages": [
1,
2
],
"cell_type": "fcc",
"from_poscar": true,
"from_poscar_path": "POSCAR",
"super_cell": [
1,
1,
1
],
"layer_numb": 3,
"vacuum_max": 5,
"vacuum_resol": [0.5,2],
"mid_point": 2.0,
"millers": [
[
1,
0,
0
]
],
"elements": [
"Al"
],
"potcars": [
"./POTCAR"
],
"relax_incar" : "INCAR_metal_rlx_low",
"scale": [
1.0
],
"skip_relax": true,
"pert_numb": 5,
"pert_box": 0.03,
"pert_atom": 0.01,
"coll_ndata": 5000,
"_comment": "that's all"
}
The following table gives explicit descriptions on keys in PARAM
.
The bold notation of key (such as Elements) means that it's a necessary key.
Key | Type | Example | Discription |
---|---|---|---|
stages | List of Integer | [1,2,3,4] | Stages for init_surf |
Elements | List of String | ["Mg"] | Atom types |
cell_type | String | "hcp" | Specifying which typical structure to be generated. Options include fcc, hcp, bcc, sc, diamond. |
latt | Float | 4.479 | Lattice constant for single cell. |
layer_numb | Integer | 3 | Number of equavilent layers of slab. |
z__min | Float | 9.0 | Thickness of slab without vacuum (Angstrom). If the layer_numb and z_min are all setted, the z_min value will be ignored. |
vacuum_max | Float | 9 | Maximal thickness of vacuum (Angstrom). |
vacuum_min | Float | 3.0 | Minimal thickness of vacuum (Angstrom). Default value is 2 times atomic radius. |
vacuum_resol | List of float | [0.5, 1 ] | Interval of thichness of vacuum. If size of vacuum_resol is 1, the interval is fixed to its value. If size of vacuum_resol is 2, the interval is vacuum_resol[0] before mid_point , otherwise vacuum_resol[1] after mid_point . |
millers | List of list of Integer | [[1,0,0]] | Miller indices. |
relax_incar | String | "....../INCAR" | Path of INCAR for relaxation in VASP. Necessary if stages include 1. |
scale | List of float | [0.980, 1.000, 1.020] | Scales for transforming cells. |
skip_relax | Boolean | False | If it's true, you may directly run stage 2 (pertub and scale) using an unrelaxed POSCAR. |
pert_numb | Integer | 30 | Number of pertubations for each POSCAR. |
pert_box | Float | 0.03 | Percentage of Perturbation for cells. |
pert_atom | Float | 0.01 | Pertubation of each atoms (Angstrom). |
coll_ndata | Integer | 5000 | Maximal number of collected data. |
You may call the main process by:
dpgen run PARAM MACHINE
.
The whole process of generator will contain a series of iterations, succussively undertaken in order such as heating the system to certain temperature.
In each iteration, there are three stages of work, namely, 00.train 01.model_devi 02.fp
.
-
00.train: DP-GEN will train several (default 4) models based on initial and generated data. The only difference between these models is the random seed for neural network initialization.
-
01.model_devi : represent for model-deviation. Model-deviation engine in
01.model_devi
can be chosen between Molecular Dynamics(LAMMPS and GROMACS) or Structures Prediction(CALYPSO). DP-GEN will use models obtained from 00.train to run Molecular Dynamics or to run structure optimization with ASE in CALYPSO. Larger deviation for structure properties (default is force of atoms) means less accuracy of the models. Using this criterion, a few structures will be selected and put into next stage02.fp
for more accurate calculation based on First Principles. -
02.fp : Selected structures will be calculated by first principles methods(default VASP). DP-GEN will obtain some new data and put them together with initial data and data generated in previous iterations. After that a new training will be set up and DP-GEN will enter next iteration!
DP-GEN identifies the current stage by a record file, record.dpgen
, which will be created and upgraded by codes.Each line contains two number: the first is index of iteration, and the second ,ranging from 0 to 9 ,records which stage in each iteration is currently running.
0,1,2 correspond to make_train, run_train, post_train. DP-GEN will write scripts in make_train
, run the task by specific machine in run_train
and collect result in post_train
. The records for model_devi and fp stage follow similar rules.
In PARAM
, you can specialize the task as you expect.
{
"type_map": [
"H",
"C"
],
"mass_map": [
1,
12
],
"init_data_prefix": "....../init/",
"init_data_sys": [
"CH4.POSCAR.01x01x01/02.md/sys-0004-0001/deepmd"
],
"sys_configs_prefix": "....../init/",
"sys_configs": [
[
"CH4.POSCAR.01x01x01/01.scale_pert/sys-0004-0001/scale*/00000*/POSCAR"
],
[
"CH4.POSCAR.01x01x01/01.scale_pert/sys-0004-0001/scale*/00001*/POSCAR"
]
],
"_comment": " that's all ",
"numb_models": 4,
"default_training_param": {
"model": {
"type_map": [
"H",
"C"
],
"descriptor": {
"type": "se_a",
"sel": [
16,
4
],
"rcut_smth": 0.5,
"rcut": 5,
"neuron": [
120,
120,
120
],
"resnet_dt": true,
"axis_neuron": 12,
"seed": 1
},
"fitting_net": {
"neuron": [
25,
50,
100
],
"resnet_dt": false,
"seed": 1
}
},
"learning_rate": {
"type": "exp",
"start_lr": 0.001,
"decay_steps": 100,
"decay_rate": 0.95
},
"loss": {
"start_pref_e": 0.02,
"limit_pref_e": 2,
"start_pref_f": 1000,
"limit_pref_f": 1,
"start_pref_v": 0.0,
"limit_pref_v": 0.0
},
"training": {
"set_prefix": "set",
"stop_batch": 2000,
"batch_size": 1,
"disp_file": "lcurve.out",
"disp_freq": 1000,
"numb_test": 4,
"save_freq": 1000,
"save_ckpt": "model.ckpt",
"load_ckpt": "model.ckpt",
"disp_training": true,
"time_training": true,
"profiling": false,
"profiling_file": "timeline.json",
"_comment": "that's all"
}
},
"model_devi_dt": 0.002,
"model_devi_skip": 0,
"model_devi_f_trust_lo": 0.05,
"model_devi_f_trust_hi": 0.15,
"model_devi_clean_traj": true,
"model_devi_jobs": [
{
"sys_idx": [
0
],
"temps": [
100
],
"press": [
1.0
],
"trj_freq": 10,
"nsteps": 300,
"ensemble": "nvt",
"_idx": "00"
},
{
"sys_idx": [
1
],
"temps": [
100
],
"press": [
1.0
],
"trj_freq": 10,
"nsteps": 3000,
"ensemble": "nvt",
"_idx": "01"
}
],
"fp_style": "vasp",
"shuffle_poscar": false,
"fp_task_max": 20,
"fp_task_min": 1,
"fp_pp_path": "....../methane/",
"fp_pp_files": [
"POTCAR"
],
"fp_incar": "....../INCAR_methane"
}
The following table gives explicit descriptions on keys in PARAM
.
The bold notation of key (such aas type_map) means that it's a necessary key.
Key | Type | Example | Discription |
---|---|---|---|
#Basics | |||
type_map | List of string | ["H", "C"] | Atom types |
mass_map | List of float | [1, 12] | Standard atom weights. |
use_ele_temp | int | 0 | Currently only support fp_style vasp. 0(default): no electron temperature. 1: eletron temperature as frame parameter. 2: electron temperature as atom parameter. |
#Data | |||
init_data_prefix | String | "/sharedext4/.../data/" | Prefix of initial data directories |
init_data_sys | List of string | ["CH4.POSCAR.01x01x01/.../deepmd"] | Directories of initial data. You may use either absolute or relative path here. Systems will be detected recursively in the directories. |
sys_format | String | "vasp/poscar" | Format of initial data. It will be vasp/poscar if not set. |
init_batch_size | String of integer | [8] | Each number is the batch_size of corresponding system for training in init_data_sys . One recommended rule for setting the sys_batch_size and init_batch_size is that batch_size mutiply number of atoms ot the stucture should be larger than 32. If set to auto , batch size will be 32 divided by number of atoms. |
sys_configs_prefix | String | "/sharedext4/.../data/" | Prefix of sys_configs |
sys_configs | List of list of string | [ ["/sharedext4/.../POSCAR"], ["....../POSCAR"] ] |
Containing directories of structures to be explored in iterations.Wildcard characters are supported here. |
sys_batch_size | List of integer | [8, 8] | Each number is the batch_size for training of corresponding system in sys_configs . If set to auto , batch size will be 32 divided by number of atoms. |
#Training | |||
numb_models | Integer | 4 (recommend) | Number of models to be trained in 00.train . |
training_iter0_model_path | list of string | ["/path/to/model0_ckpt/", ...] | The model used to init the first iter training. Number of element should be equal to numb_models |
training_init_model | bool | False | Iteration > 0, the model parameters will be initilized from the model trained at the previous iteration. Iteration == 0, the model parameters will be initialized from training_iter0_model_path . |
default_training_param | Dict | Training parameters for deepmd-kit in 00.train . You can find instructions from here: (https://github.com/deepmodeling/deepmd-kit).. |
|
dp_compress | bool | false | Use dp compress to compress the model. Default is false. |
#Exploration | |||
model_devi_dt | Float | 0.002 (recommend) | Timestep for MD |
model_devi_skip | Integer | 0 | Number of structures skipped for fp in each MD |
model_devi_f_trust_lo | Float or List of float or Dict[str, float] | 0.05 | Lower bound of forces for the selection. If List, should be set for each index in sys_configs , respectively. |
model_devi_f_trust_hi | Float or List of float or Dict[str, float] | 0.15 | Upper bound of forces for the selection. If List, should be set for each index in sys_configs , respectively. |
model_devi_v_trust_lo | Float or List of float or Dict[str, float] | 1e10 | Lower bound of virial for the selection. If List, should be set for each index in sys_configs , respectively. Should be used with DeePMD-kit v2.x. |
model_devi_v_trust_hi | Float or List of float or Dict[str, float] | 1e10 | Upper bound of virial for the selection. If List, should be set for each index in sys_configs , respectively. Should be used with DeePMD-kit v2.x. |
model_devi_adapt_trust_lo | Boolean | False | Adaptively determines the lower trust levels of force and virial. This option should be used together with model_devi_numb_candi_f , model_devi_numb_candi_v and optionally with model_devi_perc_candi_f and model_devi_perc_candi_v . dpgen will make two sets: 1. From the frames with force model deviation lower than model_devi_f_trust_hi , select max(model_devi_numb_candi_f, model_devi_perc_candi_f*n_frames) frames with largest force model deviation. 2. From the frames with virial model deviation lower than model_devi_v_trust_hi , select max(model_devi_numb_candi_v, model_devi_perc_candi_v*n_frames) frames with largest virial model deviation. The union of the two sets is made as candidate dataset |
model_devi_numb_candi_f | Int | 10 | See model_devi_adapt_trust_lo . |
model_devi_numb_candi_v | Int | 0 | See model_devi_adapt_trust_lo . |
model_devi_perc_candi_f | Float | 0.0 | See model_devi_adapt_trust_lo . |
model_devi_perc_candi_v | Float | 0.0 | See model_devi_adapt_trust_lo . |
model_devi_f_avg_relative | Boolean | False | Normalized the force model deviations by the RMS force magnitude along the trajectory. This key should not be used with use_relative . |
model_devi_clean_traj | Boolean or Int | true | If type of model_devi_clean_traj is boolean type then it denote whether to clean traj folders in MD since they are too large. If it is Int type, then the most recent n iterations of traj folders will be retained, others will be removed. |
model_devi_nopbc | Boolean | False | Assume open boundary condition in MD simulations. |
model_devi_activation_func | List of list of string | [["tanh","tanh"],["tanh","gelu"],["gelu","tanh"],["gelu","gelu"]] | Set activation functions for models, length of the List should be the same as numb_models , and two elements in the list of string respectively assign activation functions to the embedding and fitting nets within each model. Backward compatibility: the orginal "List of String" format is still supported, where embedding and fitting nets of one model use the same activation function, and the length of the List should be the same as numb_models |
model_devi_jobs | [ { "sys_idx": [0], "temps": [100], "press": [1], "trj_freq": 10, "nsteps": 1000, "ensembles": "nvt" }, ... ] |
List of dict | Settings for exploration in 01.model_devi . Each dict in the list corresponds to one iteration. The index of model_devi_jobs exactly accord with index of iterations |
model_devi_jobs["sys_idx"] | List of integer | [0] | Systems to be selected as the initial structure of MD and be explored. The index corresponds exactly to the sys_configs . |
model_devi_jobs["temps"] | List of integer | [50, 300] | Temperature (K) in MD |
model_devi_jobs["press"] | List of integer | [1,10] | Pressure (Bar) in MD |
model_devi_jobs["trj_freq"] | Integer | 10 | Frequecy of trajectory saved in MD. |
model_devi_jobs["nsteps"] | Integer | 3000 | Running steps of MD. |
model_devi_jobs["ensembles"] | String | "nvt" | Determining which ensemble used in MD, options include “npt” and “nvt”. |
model_devi_jobs["neidelay"] | Integer | "10" | delay building until this many steps since last build |
model_devi_jobs["taut"] | Float | "0.1" | Coupling time of thermostat (ps) |
model_devi_jobs["taup"] | Float | "0.5" | Coupling time of barostat (ps) |
model_devi_jobs["model_devi_f_trust_lo"] model_devi_jobs["model_devi_f_trust_hi"] model_devi_jobs["model_devi_v_trust_lo"] model_devi_jobs["model_devi_v_trust_hi"] |
Float or Dict[str, float] | See global model_devi config above like model_devi_f_trust_lo. For dict, should be set for each index in sys_idx, respectively. | |
#Labeling | |||
fp_style | string | "vasp" | Software for First Principles. Options include “vasp”, “pwscf”, “siesta” and “gaussian” up to now. |
fp_task_max | Integer | 20 | Maximum of structures to be calculated in 02.fp of each iteration. |
fp_task_min | Integer | 5 | Minimum of structures to calculate in 02.fp of each iteration. |
fp_accurate_threshold | Float | 0.9999 | If the accurate ratio is larger than this number, no fp calculation will be performed, i.e. fp_task_max = 0. |
fp_accurate_soft_threshold | Float | 0.9999 | If the accurate ratio is between this number and fp_accurate_threshold , the fp_task_max linearly decays to zero. |
fp_cluster_vacuum | Float | None | If the vacuum size is smaller than this value, this cluster will not be choosen for labeling |
fp_style == VASP | |||
fp_pp_path | String | "/sharedext4/.../ch4/" | Directory of psuedo-potential file to be used for 02.fp exists. |
fp_pp_files | List of string | ["POTCAR"] | Psuedo-potential file to be used for 02.fp. Note that the order of elements should correspond to the order in type_map . |
fp_incar | String | "/sharedext4/../ch4/INCAR" | Input file for VASP. INCAR must specify KSPACING and KGAMMA. |
fp_aniso_kspacing | List of integer | [1.0,1.0,1.0] | Set anisotropic kspacing. Usually useful for 1-D or 2-D materials. Only support VASP. If it is setting the KSPACING key in INCAR will be ignored. |
cvasp | Boolean | true | If cvasp is true, DP-GEN will use Custodian to help control VASP calculation. |
fp_style == Gaussian | |||
use_clusters | Boolean | false | If set to true , clusters will be taken instead of the whole system. This option does not work with DeePMD-kit 0.x. |
cluster_cutoff | Float | 3.5 | The cutoff radius of clusters if use_clusters is set to true . |
fp_params | Dict | Parameters for Gaussian calculation. | |
fp_params["keywords"] | String or list | "mn15/6-31g** nosymm scf(maxcyc=512)" | Keywords for Gaussian input. |
fp_params["multiplicity"] | Integer or String | 1 | Spin multiplicity for Gaussian input. If set to auto , the spin multiplicity will be detected automatically. If set to frag , the "fragment=N" method will be used. |
fp_params["nproc"] | Integer | 4 | The number of processors for Gaussian input. |
fp_style == siesta | |||
use_clusters | Boolean | false | If set to true , clusters will be taken instead of the whole system. This option does not work with DeePMD-kit 0.x. |
cluster_cutoff | Float | 3.5 | The cutoff radius of clusters if use_clusters is set to true . |
fp_params | Dict | Parameters for siesta calculation. | |
fp_params["ecut"] | Integer | 300 | Define the plane wave cutoff for grid. |
fp_params["ediff"] | Float | 1e-4 | Tolerance of Density Matrix. |
fp_params["kspacing"] | Float | 0.4 | Sample factor in Brillouin zones. |
fp_params["mixingweight"] | Float | 0.05 | Proportion a of output Density Matrix to be used for the input Density Matrix of next SCF cycle (linear mixing). |
fp_params["NumberPulay"] | Integer | 5 | Controls the Pulay convergence accelerator. |
fp_style == cp2k | |||
user_fp_params | Dict | Parameters for cp2k calculation. find detail in manual.cp2k.org. only the kind section must be set before use. we assume that you have basic knowledge for cp2k input. | |
external_input_path | String | Conflict with key:user_fp_params, use the template input provided by user, some rules should be followed, read the following text in detail. | |
fp_style == ABACUS | |||
user_fp_params | Dict | Parameters for ABACUS INPUT. find detail Here. If deepks_model is set, the model file should be in the pseudopotential directory. You can also set KPT file by adding k_points that corresponds to a list of six integers in this dictionary. |
|
fp_orb_files | List | List of atomic orbital files. The files should be in pseudopotential directory. | |
fp_dpks_descriptor | String | DeePKS descriptor file name. The file should be in pseudopotential directory. |
One can choose the model-deviation engine by specifying the key model_devi_engine
. If model_devi_engine
is not specified, the default model-deviation engine will be LAMMPS.
There are some new keys needed to be added into param
and machine
if CALYPSO as model-deviation engine.
The bold notation of key (such as calypso_path) means that it's a necessary key.
Key | Type | Example | Discription |
---|---|---|---|
in param file | |||
model_devi_engine | string | "calypso" | CALYPSO as model-deviation engine. |
calypso_input_path | string | "/home/zhenyu/workplace/debug" | The absolute path of CALYPSO input file named input.dat(PSTRESS and fmax should be included), when this keys exists, all the iters will use the same CALYPSO input file until reach the number of max iter specified by model_devi_max_iter and model_devi_jobs key will not work. |
model_devi_max_iter | int | 10 | The max iter number code can run, it works when calypso_input_path exists. |
model_devi_jobs | List of Dict | [{ "times":[3],"NameOfAtoms":["Al","Cu"],"NumberOfAtoms":[1,10],"NumberOfFormula":[1,2],"Volume":[300],"DistanceOfIon":[[ 1.48,1.44],[ 1.44,1.41]],"PsoRatio":[0.6],"PopSize":[5],"MaxStep":[3],"ICode":[1],"Split":"T"},...] | Settings for exploration in 01.model_devi . Different number in times List means different iteration index and iterations mentioned in List wil use same CALYPSO parameters. |
model_devi_jobs["times"] | List of int | [0,1,2] | Different number in times List means different iteration index and iterations mentioned in List wil use same CALYPSO parameters. |
model_devi_jobs["NameOfAtoms"] | List of string | ["Al","Cu"] | Parameter of CALYPSO input file, means the element species of structures to be generated. |
model_devi_jobs["NumberOfAtoms"] | List of int | [1,10] | Parameter of CALYPSO input file, means the number of atoms for each chemical species in one formula unit. |
model_devi_jobs["NumberOfFormula"] | List of int | [1,2] | Parameter of CALYPSO input file, means the range of formula unit per cell. |
model_devi_jobs["Volume"] | List of int | [300] | Parameter of CALYPSO input file, means the colume per formula unit(angstrom^3). |
model_devi_jobs["DistanceOfIon"] | List of float | [[ 1.48,1.44],[ 1.44,1.41]] | Parameter of CALYPSO input file, means minimal distance between atoms of each chemical species. Unit is in angstrom. |
model_devi_jobs["PsoRatio"] | List of float | [0.6] | Parameter of CALYPSO input file, means the proportion of the structures generated by PSO. |
model_devi_jobs["PopSize"] | List of int | [5] | Parameter of CALYPSO input file, means the number of structures to be generated in one step in CALYPSO. |
model_devi_jobs["MaxStep"] | List of int | [3] | Parameter of CALYPSO input file, means the number of max step in CALYPSO. |
model_devi_jobs["ICode"] | List of int | [13] | Parameter of CALYPSO input file, means the chosen of local optimization, 1 is vasp and 13 is ASE with dp. |
model_devi_jobs["Split"] | String | "T" | Parameter of CALYPSO input file, means that generating structures and optimizing structures are split into two parts, in dpgen workflow, Split must be T. |
model_devi_jobs["PSTRESS"] | List of float | [0.001] | Same as PSTRESS in INCAR. |
model_devi_jobs["fmax"] | List of float | [0.01] | The convergence criterion is that the force on all individual atoms should be less than fmax. |
in machine file | |||
model_devi["deepmdkit_python"] | String | "/home/zhenyu/soft/deepmd-kit/bin/python" | A python path with deepmd package. |
model_devi["calypso_path"] | string | "/home/zhenyu/workplace/debug" | The absolute path of calypso.x. |
Converting cp2k input is very simple as dictionary used to dpgen input. You just need follow some simple rule:
- kind section parameter must be provide
- replace
keyword
in cp2k askeyword
in dict. - replace
keyword parameter
in cp2k asvalue
in dict. - replace
section name
in cp2k askeyword
in dict. . The corresponding value is adict
. - repalce
section parameter
in cp2k asvalue
with dict. keyword"_"
repeat section
in cp2k just need to be written once with repeat parameter as list.
If you want to use your own paramter, just write a corresponding dictionary. The COORD
section will be filled by dpgen automatically, therefore do not include this in dictionary. The OT
or Diagonalization
section is require for semiconductor or metal system. For specific example, have a look on example
directory.
Here are examples for setting:
#minimal information you should provide for input
#other we have set other parameters in code, if you want to
#use your own paramter, just write a corresponding dictionary
"user_fp_params": {
"FORCE_EVAL":{
"DFT":{
"BASIS_SET_FILE_NAME": "path",
"POTENTIAL_FILE_NAME": "path",
"SCF":{
"OT":{ "keyword":"keyword parameter", "keyword2":"keyword parameter" }
}
}
"SUBSYS":{
"KIND":{
"_": ["N","C","H"],
"POTENTIAL": ["GTH-PBE-q5","GTH-PBE-q4", "GTH-PBE-q1"],
"BASIS_SET": ["DZVP-MOLOPT-GTH","DZVP-MOLOPT-GTH","DZVP-MOLOPT-GTH"]
}
}
}
}
See Full example template.inp and dpgen input parameter file in
tests/generator/cp2k_make_fp_files/exinput/template.inp
and tests/generator/param-mgo-cp2k-exinput.json
Here is example for provide external input
{
"_comment": " 02.fp ",
"fp_style": "cp2k",
"shuffle_poscar": false,
"fp_task_max": 100,
"fp_task_min": 10,
"fp_pp_path": ".",
"fp_pp_files": [],
"external_input_path": "./cp2k_make_fp_files/exinput/template.inp",
"_comment": " that's all
}
the following essential section should be provided in user template
&FORCE_EVAL
# add this line if you need to fit virial
STRESS_TENSOR ANALYTICAL
&PRINT
&FORCES ON
&END FORCES
# add this line if you need to fit virial
&STRESS_TENSOR ON
&END FORCES
&END PRINT
&SUBSYS
&CELL
ABC LEFT FOR DPGEN
&END CELL
&COORD
@include coord.xyz
&END COORD
&END SUBSYS
&END FORCE_EVAL
Suppose that we have a potential (can be DFT, DP, MEAM ...), autotest
helps us automatically calculate M porperties on N configurations. The folder where the autotest
runs is called the autotest
's working directory. Different potentials should be tested in different working directories.
A property is tested in three stages: make
, run
and post
. make
prepare all computational tasks that are needed to calculate the property. For example to calculate EOS, autotest
prepare a series of tasks, each of which has a scaled configuration with certain volume, and all necessary input files necessary for starting a VAPS or LAMMPS relaxation. run
sends all the computational tasks to remote computational resources defined in a machine configuration file like machine.json
, and automatically collect the results when remote calculations finish. post
calculates the desired property from the collected results.
The relaxation of a structure should be carried out before calculating all other properties:
dpgen autotest make equi.json
dpgen autotest run relax.json machine.json
dpgen autotest post equi.json
If, for some reason, the main program terminated at stage run
, one can easily restart with the same command.
relax.json
is the parameter file. An example for deepmd
relaxation is given as:
{
"structures": "confs/mp-*",
"interaction": {
"type": "deepmd",
"model": "frozen_model.pb",
"type_map": {"Al": 0, "Mg": 1}
},
"relaxation": {
}
}
where the key structures
provides the structures to relax. interaction
is provided with deepmd
, and other options are vasp
, eam
, meam
...
Yuzhi:
- We should notice that the
interaction
here should always be considered as a unified abstract class, which means that we should avoid repeating identifing which interaction we're using in the main code. - The structures here should always considered as a list, and the wildcard should be supported by using
glob
. Before all calculations , there is a stage where we generate the configurations.
The outputs of the relaxation are stored in the mp-*/00.relaxation
directory.
ls mp-*
mp-1/relaxation mp-2/relaxation mp-3/relaxation
Other properties can be computed in parallel:
dpgen autotest make properties.json
dpgen autotest run properties.json machine.json
dpgen autotest post properties.json
where an example of properties.json
is given by
{
"structures": "confs/mp-*",
"interaction": {
"type": "vasp",
"incar": "vasp_input/INCAR",
"potcar_prefix":"vasp_input",
"potcars": {"Al": "POTCAR.al", "Mg": "POTCAR.mg"}
},
"properties": [
{
"type": "eos",
"vol_start": 10,
"vol_end": 30,
"vol_step": 0.5
},
{
"type": "elastic",
"norm_deform": 2e-2,
"shear_deform": 5e-2
}
]
}
The dpgen
packed all eos
and elastic
task and sends them to corresponding computational resources defined in machine.json
. The outputs of a property, taking eos
for example, are stored in
ls mp-*/ | grep eos
mp-1/eos_00 mp-2/eos_00 mp-3/eos_00
where 00
are suffix of the task.
Some times we want to refine the calculation of a property from previous results. For example, when higher convergence criteria EDIFF
and EDIFFG
are necessary, and the new VASP calculation is desired to start from the previous output configration, rather than starting from scratch.
dpgen autotest make refine.json
dpgen autotest run refine.json machine.json
with refine.json
{
"properties": {
"eos" : {
"init_from_suffix": "00",
"output_suffix": "01",
"vol_start": 10,
"vol_end": 30,
"vol_step": 0.5
}
}
}
Some times the configurations automatically generated are problematic. For example, the distance between the interstitial atom and the lattic is too small, then these configurations should be filtered out. One can set filters of configurations by
{
"properties": {
"intersitital" : {
"supercell": [3,3,3],
"insert_atom": ["Al"],
"conf_filters": [
{ "min_dist": 2 }
]
}
}
}
For the implementation, one should do :
- Clearly know the input/output of the function/class. How to handle exceptions.
- Finish coding
- Provide Unittest
- Provide Document: what does the user provide in each section of the parameter file (json format)
common.py
- make_*
- run_*
- post_*
Property
- EOS
- Elastic
- Vacancy
- Interstitial
- Surface
Task:
- VASP
- DEEPMD_LMP
- MEAM_LMP
Specific functions:
- Property.make_confs : Make configurations needed to compute the property. The tasks directory will be named as path_to_work/task.xxxxxx IMPORTANT: handel the case when the directory exists.
- Property.cmpt : Compute the property.
- Task.make_input_file(Property.task_type): Prepare input files for a computational task. For example, the VASP prepares INCAR. LAMMPS (including DeePMD, MEAM...) prepares in.lammps. The parameter of this task will be stored in 'output_dir/task.json'
There are now five task types implemented in the package: vasp
, deepmd
, meam
, eam_fs
, and eam_alloy
. An inter.json
file in json format containing the interaction parameters will be written in the directory of each task. The input examples of the "interaction"
part of each type can be found below:
The default of potcar_prefix
is "".
"interaction": {
"type": "vasp",
"incar": "vasp_input/INCAR",
"potcar_prefix":"vasp_input",
"potcars": {"Al": "POTCAR.al", "Mg": "POTCAR.mg"}
}
Only 1 model can be used in autotest in one working directory and the default "deepmd_version"
is 1.2.0.
"interaction": {
"type": "deepmd",
"model": "frozen_model.pb",
"type_map": {"Al": 0, "Mg": 1},
"deepmd_version":"1.2.0"
}
Please make sure the USER-MEAMC package has already been installed in LAMMPS.
"interaction": {
"type": "meam",
"model": ["meam.lib","AlMg.meam"],
"type_map": {"Al": 1, "Mg": 2}
}
Please make sure the MANYBODY package has already been installed in LAMMPS
"interaction": {
"type": "eam_fs (eam_alloy)",
"model": "AlMg.eam.fs (AlMg.eam.alloy)",
"type_map": {"Al": 1, "Mg": 2}
}
Now the supported property types are eos
, elastic
, vacancy
, interstitial
, and surface
. Before property tests, relaxation
should be done first or the relaxation results should be present in the corresponding directory confs/mp-*/relaxation/relax_task
. A file named task.json
in json format containing the property parameter will be written in the directory of each task. Multiple property tests can be performed simultaneously and are written in the "properties"
part of the input file. An example of EOS
and Elastic
tests can be given as follows (please refer to Property for further information of the property parameters):
"properties": [
{
"type": "eos",
"vol_start": 0.8,
"vol_end": 1.2,
"vol_step": 0.01
},
{
"type": "elastic",
"norm_deform": 2e-2,
"shear_deform": 5e-2
}
]
There are three operations in auto test package, namely make
, run
, and post
. Here we take eos
property as an example for property type.
The INCAR
, POSCAR
, POTCAR
input files for VASP or in.lammps
, conf.lmp
, and the interatomic potential files for LAMMPS will be generated in the directory confs/mp-*/relaxation/relax_task
for relaxation or confs/mp-*/eos_00/task.[0-9]*[0-9]
for EOS. The machine.json
file is not needed for make
. Example:
dpgen autotest make relaxation.json
The jobs would be dispatched according to the parameter in machine.json
file and the calculation results would be sent back. Example:
dpgen autotest run relaxation.json machine.json
The post process of calculation results would be performed. result.json
in json format will be generated in confs/mp-*/relaxation/relax_task
for relaxation and result.json
in json format and result.out
in txt format in confs/mp-*/eos_00
for EOS. The machine.json
file is also not needed for post
. Example:
dpgen autotest post relaxation.json
All the property tests should be based on the equilibrium state calculated either by VASP
or LAMMPS
. The structure after relaxation is supposed to exist as the file like confs/mp-*/relaxation/relax_task/CONTCAR
and the further property tests would normally start from this configuration.
{
"structures": ["confs/std-*"],
"interaction": {
"type": "vasp",
"incar": "vasp_input/INCAR",
"potcar_prefix": "vasp_input",
"potcars": {"Al": "POTCAR.al"}
},
"relaxation": {
"cal_type": "relaxation",
"cal_setting": {"relax_pos": true,
"relax_shape": true,
"relax_vol": true,
"ediff": 1e-6,
"ediffg": -0.01,
"encut": 650,
"kspacing": 0.1,
"kgamma": false}
}
}
For VASP relaxation and all the property calculations, the initial INCAR file must be given by user and the package would change the ISIF
and NSW
parameter according to the property type. Besides, users can also set the cal_setting
dictionary in the relaxation
part to make the final changes on INCAR.
Key words | data structure | example | description |
---|---|---|---|
structures | List of String | ["confs/std-*"] | path of different structures |
interaction | Dict | See above | description of the task type and atomic interaction |
type | String | "vasp" | task type |
incar | String | "vasp_input/INCAR" | the path for INCAR file in vasp |
potcar_prefix | String | "vasp_input" | the prefix of path for POTCAR file in vasp, default = "" |
potcars | Dict | {"Al": "POTCAR.al"} | key is element type and value is potcar name |
relaxation | Dict | See above | the calculation type and setting for relaxation |
cal_type | String | "relaxation" or "static" | calculation type |
cal_setting | Dict | See above | calculation setting |
relax_pos | Boolean | true | relax atomic position or not, default = true for relaxation |
relax_shape | Boolean | true | relax box shape or not, default = true for relaxation |
relax_vol | Boolean | true | relax box volume or not, default = true for relaxation |
ediff | Float | 1e-6 | set EDIFF parameter in INCAR files |
ediffg | Float | -0.01 | set EDIFFG parameter in INCAR files |
encut | Int | 650 | set encut parameter in INCAR files |
kspacing | Float | 0.1 | set KSPACING parameter in INCAR files |
kgamma | Boolean | false | set KGAMMA parameter in INCAR files |
{
"structures": ["confs/std-*"],
"interaction": {
"type": "deepmd",
"model": "frozen_model.pb",
"in_lammps": "lammps_input/in.lammps",
"type_map": {"Al": 0}
},
"relaxation": {
"cal_setting":{"etol": 1e-12,
"ftol": 1e-6,
"maxiter": 5000,
"maximal": 500000}
}
}
Other key words different from vasp:
Key words | data structure | example | description |
---|---|---|---|
model | String or List of String | "frozen_model.pb" | model file for atomic interaction |
in_lammps | String | "lammps_input/in.lammps" | input file for lammps commands |
type_map | Dict | {"Al": 0} | key is element type and value is type number. DP starts from 0, others starts from 1 |
etol | Float | 1e-12 | stopping tolerance for energy |
ftol | Float | 1e-6 | stopping tolerance for force |
maxiter | Int | 5000 | max iterations of minimizer |
maxeval | Int | 500000 | max number of force/energy evaluations |
For LAMMPS relaxation and all the property calculations, package will help to generate in.lammps
file for user automatically according to the property type. We can also make the final changes in the minimize
setting (minimize etol ftol maxiter maxeval
) in in.lammps
. In addition, users can apply the input file for lammps commands in the interaction
part. For further information of the LAMMPS relaxation, we refer users to minimize command.
The list of the directories storing structures are ["confs/std-*"]
in the previous example. For single element system, if POSCAR
doesn't exist in the directories: std-fcc
, std-hcp
, std-dhcp
, std-bcc
, std-diamond
, and std-sc
, the package will automatically generate the standard crystal structures fcc
, hcp
, dhcp
, bcc
, diamond
, and sc
in the corresponding directories, respectively. In other conditions and for multi-component system (more than 1), if POSCAR
doesn't exist, the package will terminate and print the error "no configuration for autotest".
Take the input example of Al in the previous section, when we do make
as follows:
dpgen autotest make relaxation.json
the following files would be generated:
tree confs/std-fcc/relaxation/
confs/std-fcc/relaxation/
|-- INCAR
|-- POTCAR
`-- relax_task
|-- INCAR -> ../INCAR
|-- inter.json
|-- KPOINTS
|-- POSCAR -> ../../POSCAR
|-- POTCAR -> ../POTCAR
`-- task.json
inter.json
records the information in the interaction
dictionary and task.json
records the information in the relaxation
dictionary.
dpgen autotest make relaxation.json
tree confs/std-fcc/
the output would be:
confs/std-fcc/
|-- POSCAR
`-- relaxation
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
`-- relax_task
|-- conf.lmp
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- POSCAR -> ../../POSCAR
`-- task.json
the conf.lmp
is the input configuration and in.lammps
is the input command file for lammps.
in.lammps: the package would generate the file confs/mp-*/relaxation/in.lammps
as follows and we refer the user to the further information of fix box/relax function in lammps:
clear
units metal
dimension 3
boundary p p p
atom_style atomic
box tilt large
read_data conf.lmp
mass 1 26.982
neigh_modify every 1 delay 0 check no
pair_style deepmd frozen_model.pb
pair_coeff
compute mype all pe
thermo 100
thermo_style custom step pe pxx pyy pzz pxy pxz pyz lx ly lz vol c_mype
dump 1 all custom 100 dump.relax id type xs ys zs fx fy fz
min_style cg
fix 1 all box/relax iso 0.0
minimize 1.000000e-12 1.000000e-06 5000 500000
fix 1 all box/relax aniso 0.0
minimize 1.000000e-12 1.000000e-06 5000 500000
variable N equal count(all)
variable V equal vol
variable E equal "c_mype"
variable tmplx equal lx
variable tmply equal ly
variable Pxx equal pxx
variable Pyy equal pyy
variable Pzz equal pzz
variable Pxy equal pxy
variable Pxz equal pxz
variable Pyz equal pyz
variable Epa equal ${E}/${N}
variable Vpa equal ${V}/${N}
variable AA equal (${tmplx}*${tmply})
print "All done"
print "Total number of atoms = ${N}"
print "Final energy per atoms = ${Epa}"
print "Final volume per atoms = ${Vpa}"
print "Final Base area = ${AA}"
print "Final Stress (xx yy zz xy xz yz) = ${Pxx} ${Pyy} ${Pzz} ${Pxy} ${Pxz} ${Pyz}"
If user provides lammps input command file in.lammps
, the thermo_style
and dump
commands should be the same as the above file.
interatomic potential model: the frozen_model.pb
in confs/mp-*/relaxation
would link to the frozen_model.pb
file given in the input.
The work path of each task should be in the form like confs/mp-*/relaxation
and all task is in the form like confs/mp-*/relaxation/relax_task
.
The machine.json
file should be applied in this process and the machine parameters (eg. GPU or CPU) are determined according to the task type (VASP or LAMMPS). Then in each work path, the corresponding tasks would be submitted and the results would be sent back through make_dispatcher.
Take deepmd
run for example:
nohup dpgen autotest run relaxation.json machine-ali.json > run.result 2>&1 &
tree confs/std-fcc/relaxation/
the output would be:
confs/std-fcc/relaxation/
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
|-- jr.json
`-- relax_task
|-- conf.lmp
|-- dump.relax
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- log.lammps
|-- outlog
|-- POSCAR -> ../../POSCAR
`-- task.json
dump.relax
is the file storing configurations and log.lammps
is the output file for lammps.
Take deepmd
post for example:
dpgen autotest post relaxation.json
tree confs/std-fcc/relaxation/
the output will be:
confs/std-fcc/relaxation/
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
|-- jr.json
`-- relax_task
|-- conf.lmp
|-- CONTCAR
|-- dump.relax
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- log.lammps
|-- outlog
|-- POSCAR -> ../../POSCAR
|-- result.json
`-- task.json
result.json
stores the box cell, coordinates, energy, force, virial,... information of each frame in the relaxation trajectory and CONTCAR
is the final equilibrium configuration.
result.json
:
{
"@module": "dpdata.system",
"@class": "LabeledSystem",
"data": {
"atom_numbs": [
1
],
"atom_names": [
"Al"
],
"atom_types": {
"@module": "numpy",
"@class": "array",
"dtype": "int64",
"data": [
0
]
},
"orig": {
"@module": "numpy",
"@class": "array",
"dtype": "int64",
"data": [
0,
0,
0
]
},
"cells": {
"@module": "numpy",
"@class": "array",
"dtype": "float64",
"data": [
[
[
2.8637824638,
0.0,
0.0
],
[
1.4318912319,
2.4801083646,
0.0
],
[
1.4318912319,
0.8267027882,
2.3382685902
]
],
[
[
2.8549207998018438,
0.0,
0.0
],
[
1.4274603999009239,
2.472433938457684,
0.0
],
[
1.4274603999009212,
0.8241446461525599,
2.331033071844216
]
],
[
[
2.854920788303194,
0.0,
0.0
],
[
1.427460394144466,
2.472433928487206,
0.0
],
[
1.427460394154763,
0.8241446428350139,
2.331033062460779
]
]
]
},
"coords": {
"@module": "numpy",
"@class": "array",
"dtype": "float64",
"data": [
[
[
0.0,
0.0,
0.0
]
],
[
[
5.709841595683707e-25,
-4.3367974740910857e-19,
0.0
]
],
[
[
-8.673606219968035e-19,
8.673619637565944e-19,
8.673610853102186e-19
]
]
]
},
"energies": {
"@module": "numpy",
"@class": "array",
"dtype": "float64",
"data": [
-3.745029,
-3.7453815,
-3.7453815
]
},
"forces": {
"@module": "numpy",
"@class": "array",
"dtype": "float64",
"data": [
[
[
0.0,
-6.93889e-18,
-3.46945e-18
]
],
[
[
1.38778e-17,
6.93889e-18,
-1.73472e-17
]
],
[
[
1.38778e-17,
1.73472e-17,
-4.51028e-17
]
]
]
},
"virials": {
"@module": "numpy",
"@class": "array",
"dtype": "float64",
"data": [
[
[
-0.07534992071654338,
1.2156615579052586e-17,
1.3904892126132796e-17
],
[
1.2156615579052586e-17,
-0.07534992071654338,
4.61571024026576e-12
],
[
1.3904892126132796e-17,
4.61571024026576e-12,
-0.07534992071654338
]
],
[
[
-9.978994290457664e-08,
-3.396452753975288e-15,
8.785831629151552e-16
],
[
-3.396452753975288e-15,
-9.991375413666671e-08,
5.4790751628409565e-12
],
[
8.785831629151552e-16,
5.4790751628409565e-12,
-9.973497959053003e-08
]
],
[
[
1.506940521266962e-11,
1.1152016233536118e-11,
-8.231900529157644e-12
],
[
1.1152016233536118e-11,
-6.517665029355618e-11,
-6.33706710415926e-12
],
[
-8.231900529157644e-12,
-6.33706710415926e-12,
5.0011471096530724e-11
]
]
]
},
"stress": {
"@module": "numpy",
"@class": "array",
"dtype": "float64",
"data": [
[
[
-7.2692250000000005,
1.1727839e-15,
1.3414452e-15
],
[
1.1727839e-15,
-7.2692250000000005,
4.4529093000000003e-10
],
[
1.3414452e-15,
4.4529093000000003e-10,
-7.2692250000000005
]
],
[
[
-9.71695e-06,
-3.3072633e-13,
8.5551193e-14
],
[
-3.3072633e-13,
-9.729006000000001e-06,
5.3351969e-10
],
[
8.5551193e-14,
5.3351969e-10,
-9.711598e-06
]
],
[
[
1.4673689e-09,
1.0859169e-09,
-8.0157343e-10
],
[
1.0859169e-09,
-6.3465139e-09,
-6.1706584e-10
],
[
-8.0157343e-10,
-6.1706584e-10,
4.8698191e-09
]
]
]
}
}
}
Here we take deepmd for example and the input file for other task types is similar.
{
"structures": ["confs/std-*"],
"interaction": {
"type": "deepmd",
"model": "frozen_model.pb",
"deepmd_version":"1.2.0",
"type_map": {"Al": 0}
},
"properties": [
{
"type": "eos",
"vol_start": 0.9,
"vol_end": 1.1,
"vol_step": 0.01
},
{
"type": "elastic",
"norm_deform": 2e-2,
"shear_deform": 5e-2
},
{
"type": "vacancy",
"supercell": [3, 3, 3],
"start_confs_path": "../vasp/confs"
},
{
"type": "interstitial",
"supercell": [3, 3, 3],
"insert_ele": ["Al"],
"conf_filters":{"min_dist": 1.5},
"cal_setting": {"input_prop": "lammps_input/lammps_high"}
},
{
"type": "surface",
"min_slab_size": 10,
"min_vacuum_size":11,
"max_miller": 2,
"cal_type": "static"
}
]
}
Universal key words for properties
Key words | data structure | example | description |
---|---|---|---|
type | String | "eos" | specifying the property type |
skip | Boolean | true | whether to skip current property or not |
start_confs_path | String | "../vasp/confs" | starting from the equilibrium configuration in other path only for the current property type |
cal_setting["input_prop"] | String | "lammps_input/lammps_high" | input commands file for lammps |
cal_setting["overwrite_interaction"] | Dict | overwrite the interaction in the interaction part only for the current property type |
other parameters in cal_setting
and cal_type
in relaxation
also apply in property
.
Key words for EOS
Key words | data structure | example | description |
---|---|---|---|
vol_start | Float | 0.9 | the starting volume related to the equilibrium structure |
vol_end | Float | 1.1 | the biggest volume related to the equilibrium structure |
vol_step | Float | 0.01 | the volume increment related to the equilibrium structure |
vol_abs | Boolean | false | whether to treat vol_start and vol_end as absolute volume or not (as relative volume), default = false |
Key words for Elastic
Key words | data structure | example | description |
---|---|---|---|
norm_deform | Float | 2e-2 | specifying the deformation in xx, yy, zz, default = 2e-3 |
shear_deform | Float | 5e-2 | specifying the deformation in other directions, default = 5e-3 |
Key words for Vacancy
Key words | data structure | example | description |
---|---|---|---|
supercell | Lisf of Int | [3,3,3] | the supercell to be constructed, default = [1,1,1] |
Key words for Interstitial
Key words | data structure | example | description |
---|---|---|---|
insert_ele | Lisf of String | ["Al"] | the element to be inserted |
supercell | Lisf of Int | [3,3,3] | the supercell to be constructed, default = [1,1,1] |
conf_filters | Dict | "min_dist": 1.5 | filter out the undesirable configuration |
Key words for Surface
Key words | data structure | example | description |
---|---|---|---|
min_slab_size | Int | 10 | minimum size of slab thickness |
min_vacuum_size | Int | 11 | minimum size of vacuum width |
pert_xz | Float | 0.01 | perturbation through xz direction used to compute surface energy, default = 0.01 |
max_miller | Int | 2 | the maximum miller index |
dpgen autotest make property.json
EOS output:
confs/std-fcc/eos_00/
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- task.000000
| |-- conf.lmp
| |-- eos.json
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps
| |-- inter.json
| |-- POSCAR
| |-- POSCAR.orig -> ../../relaxation/relax_task/CONTCAR
| `-- task.json
|-- task.000001
| |-- conf.lmp
| |-- eos.json
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps
| |-- inter.json
| |-- POSCAR
| |-- POSCAR.orig -> ../../relaxation/relax_task/CONTCAR
| `-- task.json
...
`-- task.000019
|-- conf.lmp
|-- eos.json
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps
|-- inter.json
|-- POSCAR
|-- POSCAR.orig -> ../../relaxation/relax_task/CONTCAR
`-- task.json
eos.json
records the volume
and scale
of the corresponding task.
Elastic output:
confs/std-fcc/elastic_00/
|-- equi.stress.json
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
|-- POSCAR -> ../relaxation/relax_task/CONTCAR
|-- task.000000
| |-- conf.lmp
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps -> ../in.lammps
| |-- inter.json
| |-- POSCAR
| |-- strain.json
| `-- task.json
|-- task.000001
| |-- conf.lmp
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps -> ../in.lammps
| |-- inter.json
| |-- POSCAR
| |-- strain.json
| `-- task.json
...
`-- task.000023
|-- conf.lmp
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- POSCAR
|-- strain.json
`-- task.json
equi.stress.json
records the stress information of the equilibrium task and strain.json
records the deformation information of the corresponding task.
Vacancy output:
confs/std-fcc/vacancy_00/
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
|-- POSCAR -> ../relaxation/relax_task/CONTCAR
`-- task.000000
|-- conf.lmp
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- POSCAR
|-- supercell.json
`-- task.json
supercell.json
records the supercell size information of the corresponding task.
Interstitial output:
confs/std-fcc/interstitial_00/
|-- element.out
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
|-- POSCAR -> ../relaxation/relax_task/CONTCAR
|-- task.000000
| |-- conf.lmp
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps -> ../in.lammps
| |-- inter.json
| |-- POSCAR
| |-- supercell.json
| `-- task.json
`-- task.000001
|-- conf.lmp
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- POSCAR
|-- supercell.json
`-- task.json
element.out
records the inserted element type of each task and supercell.json
records the supercell size information of the corresponding task.
Surface output:
confs/std-fcc/surface_00/
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
|-- POSCAR -> ../relaxation/relax_task/CONTCAR
|-- task.000000
| |-- conf.lmp
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps -> ../in.lammps
| |-- inter.json
| |-- miller.json
| |-- POSCAR
| |-- POSCAR.tmp
| `-- task.json
|-- task.000001
| |-- conf.lmp
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps -> ../in.lammps
| |-- inter.json
| |-- miller.json
| |-- POSCAR
| |-- POSCAR.tmp
| `-- task.json
...
`-- task.000008
|-- conf.lmp
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- miller.json
|-- POSCAR
|-- POSCAR.tmp
`-- task.json
miller.json
records the miller index of the corresponding task.
nohup dpgen autotest run property.json machine-ali.json > run.result 2>&1 &
the result file log.lammps
, dump.relax
, and outlog
would be sent back.
dpgen autotest post property.json
EOS output:
reult.out:
conf_dir: /root/auto_test_example/deepmd/confs/std-fcc/eos_00
VpA(A^3) EpA(eV)
14.808 -3.7194
14.973 -3.7242
15.138 -3.7285
15.302 -3.7323
15.467 -3.7356
15.631 -3.7385
15.796 -3.7409
15.960 -3.7428
16.125 -3.7442
16.289 -3.7451
16.454 -3.7454
16.618 -3.7451
16.783 -3.7440
16.947 -3.7423
17.112 -3.7396
17.277 -3.7360
17.441 -3.7314
17.606 -3.7254
17.770 -3.7180
17.935 -3.7088
result.json:
{
"14.808453313267595": -3.7194474,
"14.972991683415014": -3.7242038,
"15.13753005356243": -3.7284845,
"15.30206842370985": -3.7322877,
"15.466606793857267": -3.7356189,
"15.631145164004685": -3.7384827,
"15.7956835341521": -3.7408759,
"15.96022190429952": -3.7427885,
"16.12476027444694": -3.7441995,
"16.289298644594354": -3.7450777,
"16.453837014741772": -3.7453815,
"16.61837538488919": -3.7450585,
"16.782913755036606": -3.7440445,
"16.947452125184025": -3.7422635,
"17.111990495331444": -3.7396287,
"17.276528865478863": -3.736038,
"17.441067235626278": -3.7313635,
"17.605605605773697": -3.7254247,
"17.770143975921115": -3.7179689,
"17.934682346068534": -3.7087655
}
Elastic output:
result.out:
/root/auto_test_example/deepmd/confs/std-fcc/elastic_00
134.91 54.33 51.80 3.57 -0.00 -0.00
54.56 134.60 51.80 -3.54 0.00 0.00
51.91 51.91 137.02 -0.00 0.00 0.00
3.88 -3.77 -1.28 35.41 0.00 0.00
-0.00 0.00 0.00 0.00 35.38 3.86
0.00 0.00 0.00 0.00 4.03 38.38
# Bulk Modulus BV = 80.32 GPa
# Shear Modulus GV = 38.41 GPa
# Youngs Modulus EV = 99.38 GPa
# Poission Ratio uV = 0.29
result.json:
{
"elastic_tensor": [
134.90955999999997,
54.329958699999985,
51.802386099999985,
3.5745279599999993,
-1.3886325999999648e-05,
-1.9638233999999486e-05,
54.55840299999999,
134.59654699999996,
51.7972336,
-3.53972684,
1.839568799999963e-05,
8.756799399999951e-05,
51.91324859999999,
51.913292199999994,
137.01763799999998,
-5.090339399999969e-05,
6.99251629999996e-05,
3.736478699999946e-05,
3.8780564440000007,
-3.770445632,
-1.2766205999999956,
35.41343199999999,
2.2479590800000023e-05,
1.3837692000000172e-06,
-4.959999999495933e-06,
2.5800000003918792e-06,
1.4800000030874965e-06,
2.9000000008417968e-06,
35.375960199999994,
3.8608356,
0.0,
0.0,
0.0,
0.0,
4.02554856,
38.375018399999995
],
"BV": 80.3153630222222,
"GV": 38.40582656,
"EV": 99.37716395728943,
"uV": 0.2937771799031088
}
Vacancy output:
result.out:
/root/auto_test_example/deepmd/confs/std-fcc/vacancy_00
Structure: Vac_E(eV) E(eV) equi_E(eV)
[3, 3, 3]-task.000000: 0.735 -96.645 -97.380
result.json:
{
"[3, 3, 3]-task.000000": [
0.7352769999999964,
-96.644642,
-97.379919
]
}
Interstitial output:
result.out:
/root/auto_test_example/deepmd/confs/std-fcc/interstitial_00
Insert_ele-Struct: Inter_E(eV) E(eV) equi_E(eV)
Al-[3, 3, 3]-task.000000: 4.023 -100.848 -104.871
Al-[3, 3, 3]-task.000001: 2.783 -102.088 -104.871
result.json:
{
"Al-[3, 3, 3]-task.000000": [
4.022952000000004,
-100.84773,
-104.870682
],
"Al-[3, 3, 3]-task.000001": [
2.7829520000000088,
-102.08773,
-104.870682
]
}
Surface output:
result.out:
/root/auto_test_example/deepmd/confs/std-fcc/surface_00
Miller_Indices: Surf_E(J/m^2) EpA(eV) equi_EpA(eV)
[1, 1, 1]-task.000000: 0.805 -3.604 -3.745
[2, 2, 1]-task.000001: 0.991 -3.578 -3.745
[1, 1, 0]-task.000002: 0.946 -3.553 -3.745
[2, 2, -1]-task.000003: 0.987 -3.559 -3.745
[2, 1, 1]-task.000004: 1.014 -3.563 -3.745
[2, 1, -1]-task.000005: 1.066 -3.543 -3.745
[2, 1, -2]-task.000006: 1.034 -3.551 -3.745
[2, 0, -1]-task.000007: 0.957 -3.569 -3.745
[2, -1, -1]-task.000008: 0.943 -3.577 -3.745
result.json:
{
"[1, 1, 1]-task.000000": [
0.8051037974207992,
-3.6035018,
-3.7453815
],
"[2, 2, 1]-task.000001": [
0.9913881928811771,
-3.5781115999999997,
-3.7453815
],
"[1, 1, 0]-task.000002": [
0.9457333586026173,
-3.5529366000000002,
-3.7453815
],
"[2, 2, -1]-task.000003": [
0.9868013100872397,
-3.5590607142857142,
-3.7453815
],
"[2, 1, 1]-task.000004": [
1.0138239046484236,
-3.563035875,
-3.7453815
],
"[2, 1, -1]-task.000005": [
1.0661817319108005,
-3.5432459166666668,
-3.7453815
],
"[2, 1, -2]-task.000006": [
1.034003253044026,
-3.550884125,
-3.7453815
],
"[2, 0, -1]-task.000007": [
0.9569958287615818,
-3.5685403333333334,
-3.7453815
],
"[2, -1, -1]-task.000008": [
0.9432935501134583,
-3.5774615714285716,
-3.7453815
]
}
(Universal for all property tests)
In some cases, we want to refine the calculation results of a property based on previous results by using different convergence criteria like EDIFF
and EDIFFG
or higher ENCUT
. If the parameter of init_from_suffix
and output_suffix
are both provided in the input file, refine
would start based on the results in init_from_suffix
directory and output the results to output_suffix
directory. Otherwise, the calculation results would be output to the default suffix 00
. An example of the input file is given below:
{
"structures": ["confs/std-*"],
"interaction": {
"type": "deepmd",
"model": "frozen_model.pb",
"deepmd_version":"1.2.0",
"type_map": {"Al": 0}
},
"properties": [
{
"type": "vacancy",
"init_from_suffix": "00",
"output_suffix": "01",
"cal_setting": {"input_prop": "lammps_input/lammps_high"}
}
]
}
In this example, refine
would output the results to vacancy_01
based on the previous results in vacancy_00
by using a different input commands file for lammps.
dpgen autotest make refine.json
tree confs/std-fcc/vacancy_01/
the output will be:
confs/std-fcc/vacancy_01/
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
`-- task.000000
|-- conf.lmp
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- POSCAR -> ../../vacancy_00/task.000000/CONTCAR
|-- supercell.json -> ../../vacancy_00/task.000000/supercell.json
`-- task.json
an new directory vacancy_01
would be established and the starting configuration links to previous results.
nohup dpgen autotest run refine.json machine-ali.json > run.result 2>&1 &
the run process of refine
is similar to before.
dpgen autotest post refine.json
the post process of refine
is similar to the corresponding property.
(Universal for all property tests except for elastic
)
Some times we want to reproduce the initial results with the same configurations for cross validation. This version of auto-test package can accomplish this successfully in all property types except for Elastic
. An input example for using deepmd
to reproduce the VASP
Interstitial results is given as below:
{
"structures": ["confs/std-*"],
"interaction": {
"type": "deepmd",
"model": "frozen_model.pb",
"deepmd_version":"1.2.0",
"type_map": {"Al": 0}
},
"properties": [
{
"type": "interstitial",
"reproduce": true,
"init_from_suffix": "00",
"init_data_path": "../vasp/confs",
"reprod_last_frame": false
}
]
}
reproduce
denotes whether to do reproduce
or not and the default value is False.
init_data_path
is the path of VASP or LAMMPS initial data to be reproduced. init_from_suffix
is the suffix of the initial data and the default value is "00". In this case, the VASP Interstitial results are stored in ../vasp/confs/std-*/interstitial_00
and the reproduced Interstitial results would be in deepmd/confs/std-*/interstitial_reprod
.
reprod_last_frame
denotes if only the last frame is used in reproduce. The default value is True for eos and surface, but is False for vacancy and interstitial.
dpgen autotest make reproduce.json
tree confs/std-fcc/interstitial_reprod/
the output will be:
confs/std-fcc/interstitial_reprod/
|-- frozen_model.pb -> ../../../frozen_model.pb
|-- in.lammps
|-- task.000000
| |-- conf.lmp
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps -> ../in.lammps
| |-- inter.json
| |-- POSCAR
| `-- task.json
|-- task.000001
| |-- conf.lmp
| |-- frozen_model.pb -> ../frozen_model.pb
| |-- in.lammps -> ../in.lammps
| |-- inter.json
| |-- POSCAR
| `-- task.json
...
`-- task.000038
|-- conf.lmp
|-- frozen_model.pb -> ../frozen_model.pb
|-- in.lammps -> ../in.lammps
|-- inter.json
|-- POSCAR
`-- task.json
every singe frame in the initial data is split into each task and the following in.lammps
would help to do the static
calculation:
clear
units metal
dimension 3
boundary p p p
atom_style atomic
box tilt large
read_data conf.lmp
mass 1 26.982
neigh_modify every 1 delay 0 check no
pair_style deepmd frozen_model.pb
pair_coeff
compute mype all pe
thermo 100
thermo_style custom step pe pxx pyy pzz pxy pxz pyz lx ly lz vol c_mype
dump 1 all custom 100 dump.relax id type xs ys zs fx fy fz
run 0
variable N equal count(all)
variable V equal vol
variable E equal "c_mype"
variable tmplx equal lx
variable tmply equal ly
variable Pxx equal pxx
variable Pyy equal pyy
variable Pzz equal pzz
variable Pxy equal pxy
variable Pxz equal pxz
variable Pyz equal pyz
variable Epa equal ${E}/${N}
variable Vpa equal ${V}/${N}
variable AA equal (${tmplx}*${tmply})
print "All done"
print "Total number of atoms = ${N}"
print "Final energy per atoms = ${Epa}"
print "Final volume per atoms = ${Vpa}"
print "Final Base area = ${AA}"
print "Final Stress (xx yy zz xy xz yz) = ${Pxx} ${Pyy} ${Pzz} ${Pxy} ${Pxz} ${Pyz}"
nohup dpgen autotest run reproduce.json machine-ali.json > run.result 2>&1 &
the run process of reproduce
is similar to before.
dpgen autotest post reproduce.json
the output will be:
result.out:
/root/auto_test_example/deepmd/confs/std-fcc/interstitial_reprod
Reproduce: Initial_path Init_E(eV/atom) Reprod_E(eV/atom) Difference(eV/atom)
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.020 -3.240 -0.220
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.539 -3.541 -0.002
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.582 -3.582 -0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.582 -3.581 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.594 -3.593 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.594 -3.594 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.598 -3.597 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.600 -3.600 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.600 -3.600 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.601 -3.600 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.602 -3.601 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.603 -3.602 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.603 -3.602 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.603 -3.602 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.603 -3.602 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.603 -3.602 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.603 -3.602 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000000 -3.603 -3.602 0.001
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.345 -3.372 -0.027
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.546 -3.556 -0.009
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.587 -3.593 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.593 -3.599 -0.006
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.600 -3.606 -0.006
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.600 -3.606 -0.006
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.624 -3.631 -0.006
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.634 -3.640 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.637 -3.644 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.637 -3.644 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.638 -3.645 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.638 -3.645 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
.../vasp/confs/std-fcc/interstitial_00/task.000001 -3.639 -3.646 -0.007
the comparison of the initial and reproduced results as well as the absolute path of the initial data is recorded.
result.json:
{
"/root/auto_test_example/vasp/confs/std-fcc/interstitial_00/task.000000": {
"nframes": 18,
"error": 0.0009738182472213228
},
"/root/auto_test_example/vasp/confs/std-fcc/interstitial_00/task.000001": {
"nframes": 21,
"error": 0.0006417039154057605
}
}
the error analysis corresponding to the initial data is recorded and the error of the first frame is disregarded when all the frames are considered in reproduce.
dpdispatcher Update Note:
dpdispatcher has updated and the api of machine.json
is changed.
dpgen will use new dpdispatcher if the key api_version
in dpgen's machine.json
's value is equal or large than 1.0
.
And dpgen will use old dpdispatcher if the key api_version
is not specified in machine.json
or the api_version
is smaller than 1.0
.
This gurantees that the old machine.json
s still work.
And for now dpdispatcher is maintained on a seperate repo. The repo link: https://github.com/deepmodeling/dpdispatcher
The api of new dpdispatcher is close to old one except for a few changes.
The new machine.json
examples can be seen here
And Here are the explanations of the keys in machine resources.
Here is a example machine.json
for dpgen's new dpdispatcher.
Please check the documents for more information about new dpdispatcher.
an example of new dpgen's machine.json
{
"api_version": "1.0",
"train":
{
"command": "dp",
"machine": {
"batch_type": "PBS",
"context_type": "SSHContext",
"local_root": "./",
"remote_root": "/home/user1234/work_path_dpdispatcher_test",
"remote_profile": {
"hostname": "39.xxx.xx.xx",
"username": "user1234"
}
},
"resources": {
"number_node": 1,
"cpu_per_node": 4,
"gpu_per_node": 1,
"queue_name": "T4_4_15",
"group_size": 1,
"custom_flags":["#SBATCH --mem=32G"],
"strategy": {"if_cuda_multi_devices": true},
"para_deg": 3,
"source_list": ["/home/user1234/deepmd.1.2.4.env"]
}
},
"model_devi":
{
"command": "lmp",
"machine":{
"batch_type": "PBS",
"context_type": "SSHContext",
"local_root": "./",
"remote_root": "/home/user1234/work_path_dpdispatcher_test",
"remote_profile": {
"hostname": "39.xxx.xx.xx",
"username": "user1234"
}
},
"resources": {
"number_node": 1,
"cpu_per_node": 4,
"gpu_per_node": 1,
"queue_name": "T4_4_15",
"group_size": 5,
"source_list": ["/home/user1234/deepmd.1.2.4.env"]
}
},
"fp":
{
"command": "vasp_std",
"machine":{
"batch_type": "PBS",
"context_type": "SSHContext",
"local_root": "./",
"remote_root": "/home/user1234/work_path_dpdispatcher_test",
"remote_profile": {
"hostname": "39.xxx.xx.xx",
"username": "user1234"
}
},
"resources": {
"number_node": 1,
"cpu_per_node": 32,
"gpu_per_node": 0,
"queue_name": "G_32_128",
"group_size": 1,
"source_list": ["~/vasp.env"]
}
}
}
note1: the key "local_root" in dpgen's machine.json is always ./
When switching into a new machine, you may modifying the MACHINE
, according to the actual circumstance. Once you have finished, the MACHINE
can be re-used for any DP-GEN tasks without any extra efforts.
An example for MACHINE
is:
{
"train":
{
"machine": {
"batch": "slurm",
"hostname": "localhost",
"port": 22,
"username": "Angus",
"work_path": "....../work"
},
"resources": {
"numb_node": 1,
"numb_gpu": 1,
"task_per_node": 4,
"partition": "AdminGPU",
"exclude_list": [],
"source_list": [
"....../train_tf112_float.env"
],
"module_list": [],
"time_limit": "23:0:0",
"qos": "data"
},
"command": "USERPATH/dp"
},
"model_devi":
{
"machine": {
"batch": "slurm",
"hostname": "localhost",
"port": 22,
"username": "Angus",
"work_path": "....../work"
},
"resources": {
"numb_node": 1,
"numb_gpu": 1,
"task_per_node": 2,
"partition": "AdminGPU",
"exclude_list": [],
"source_list": [
"......./lmp_tf112_float.env"
],
"module_list": [],
"time_limit": "23:0:0",
"qos": "data"
},
"command": "lmp_serial",
"group_size": 1
},
"fp":
{
"machine": {
"batch": "slurm",
"hostname": "localhost",
"port": 22,
"username": "Angus",
"work_path": "....../work"
},
"resources": {
"task_per_node": 4,
"numb_gpu": 1,
"exclude_list": [],
"with_mpi": false,
"source_list": [],
"module_list": [
"mpich/3.2.1-intel-2017.1",
"vasp/5.4.4-intel-2017.1",
"cuda/10.1"
],
"time_limit": "120:0:0",
"partition": "AdminGPU",
"_comment": "that's All"
},
"command": "vasp_gpu",
"group_size": 1
}
}
Following table illustrates which key is needed for three types of machine: train
,model_devi
and fp
. Each of them is a list of dicts. Each dict can be considered as an independent environmnet for calculation.
Key | train |
model_devi |
fp |
---|---|---|---|
machine | NEED | NEED | NEED |
resources | NEED | NEED | NEED |
command | NEED | NEED | NEED |
group_size | NEED | NEED | NEED |
The following table gives explicit descriptions on keys in param.json.
Key | Type | Example | Discription |
---|---|---|---|
machine | Dict | Settings of the machine for TASK. | |
resources | Dict | Resources needed for calculation. | |
# Followings are keys in resources | |||
numb_node | Integer | 1 | Node count required for the job |
task_per_node | Integer | 4 | Number of CPU cores required |
numb_gpu | Integer | Integer | 4 |
manual_cuda_devices | Interger | 1 | Used with key "manual_cuda_multiplicity" specify the gpu number |
manual_cuda_multiplicity | Interger | 5 | Used in 01.model_devi,used with key "manual_cuda_devices" specify the MD program number running on one GPU at the same time,dpgen will automatically allocate MD jobs on different GPU. This can improve GPU usage for GPU like V100. |
node_cpu | Integer | 4 | Only for LSF. The number of CPU cores on each node that should be allocated to the job. |
new_lsf_gpu | Boolean | false | Only for LSF. Control whether new syntax of GPU to be enabled. If enabled, DP-GEN will generate line like #BSUB -gpu num=1:mode=shared:j_exclusive=yes in job submission script. Only support LSF>=10.1.0.3, and LSB_GPU_NEW_SYNTAX=Y should be set. Default: false . |
exclusive | Boolean | false | Only for LSF, and only take effect when new_lsf_gpu enabled. Control whether enable j_exclusive during running. Default: false . |
source_list | List of string | "....../vasp.env" | Environment needed for certain job. For example, if "env" is in the list, 'source env' will be written in the script. |
module_list | List of string | [ "Intel/2018", "Anaconda3"] | For example, If "Intel/2018" is in the list, "module load Intel/2018" will be written in the script. |
partition | String | "AdminGPU" | Partition / queue in which to run the job. |
time_limit | String (time format) | 23:00:00 | Maximal time permitted for the job |
mem_limit | Interger | 16 | Maximal memory permitted to apply for the job. |
with_mpi | Boolean | true | Deciding whether to use mpi for calculation. If it's true and machine type is Slurm, "srun" will be prefixed to command in the script. |
qos | "string" | "bigdata" | Deciding priority, dependent on particular settings of your HPC. |
allow_failure | Boolean | false | Allow the command to return a non-zero exit code. |
# End of resources | |||
command | String | "lmp_serial" | Executable path of software, such as lmp_serial , lmp_mpi and vasp_gpu , vasp_std , etc. |
group_size | Integer | 5 | DP-GEN will put these jobs together in one submitting script. |
user_forward_files | List of str | ["/path_to/vdw_kernel.bindat"] | These files will be uploaded in each calculation task. You should make sure provide the path exists. |
user_backward_files | List of str | ["HILLS"] | Besides DP-GEN's normal output, these files will be downloaded after each calculation. You should make sure these files can be generated. |
-
The most common problem is whether two settings correspond with each other, including:
- The order of elements in
type_map
andmass_map
andfp_pp_files
. - Size of
init_data_sys
andinit_batch_size
. - Size of
sys_configs
andsys_batch_size
. - Size of
sel_a
and actual types of atoms in your system. - Index of
sys_configs
andsys_idx
- The order of elements in
-
Please verify the directories of
sys_configs
. If there isnt's any POSCAR for01.model_devi
in one iteration, it may happen that you write the false path ofsys_configs
. -
Correct format of JSON file.
-
In
02.fp
, total cores you require throughtask_per_node
should be devided bynpar
timeskpar
. -
The frames of one system should be larger than
batch_size
andnumb_test
indefault_training_param
. It happens that one iteration adds only a few structures and causes error in next iteration's training. In this condition, you may letfp_task_min
be larger thannumb_test
.
The project dpgen is licensed under GNU LGPLv3.0.