Skip to content

mdnls/conv-ml-amp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-layer State Evolution Under Random Convolutional Design

Installation

To install the packages required to run this code, use the command conda create --name <env> --file Requirements.txt.

Running the Code

The code can be run using command line argument specied in main.py. See the documentation by running python main.py.

Here are some examples:

  • For Figure 1, sparsity prior, with varying a (measurement ratio) and sparsity (average number of nonzero entries of prior samples):

python main.py --name Fig-1 --prior sparse --channel conv-cs --noise_std 0.01 -a {a} --sparsity {sparsity} --dims 1024 1024 3

  • For Figure 5, ReLU prior, with varying a (measurement ratio) and L (number of layers of the prior):

python main.py --name Fig-5-ReLU --prior {L}-relu --channel cs --noise_std -0.01 -a {a} --dims 10000 10 3

  • For Figure 5, Linear prior, with varying a (measurement ratio) and L (number of layers of the prior): :

python main.py --name Fig-5-Linear --prior {L}-relu --channel cs --noise_std -0.01 -a {a} --dims 10000 10 3

Note that including the --se flag will cause the code to run the state evolution simulation instead.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages