This readme is introduced in Chinese (including most of the comments in the code). Please translate it into English if necessary.
以下是本项目支持的模型列表,包含了自AelxNet以来经典的深度学习分类模型,大部分模型是基于卷积神经网络的,也有一部分是基于注意力机制的。
模型代码在classic_models文件夹中。博客链接是对模型的介绍,有一些正在编写,会持续更新...
This project organizes classic classification Neural Networks based convolution or attention mechanism:
-
AlexNet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123839843 -
ZFNet
Blog Introduction Link: WRINTING -
VggNet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123716634 -
GoogleNet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123717625 -
ResNet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123739792 -
DenseNet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123765554 -
MobileNet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123793236 -
ShuffleNet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123797686 -
SENet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123848298 -
Vision_Transformer
Blog Introduction Link: WRINTING -
Swin_Transformer
Blog Introduction Link: WRINTING -
EfficientNet
Blog Introduction Link: https://blog.csdn.net/qq_39297053/article/details/123804502 -
ConvNeXt
Blog Introduction Link: WRINTIN -
MLP-mixer
Blog Introduction Link: WRINTING... ...
In additon, I write training and inference python scripts for image classification task. train.py
本项目是使用python语言基于pytorch深度学习框架编写的。 此外,我写了三个训练脚本用于模型的训练,默认的数据集是花朵数据集,此数据集包含五种不同种类共三千多张花朵图像,下载链接:链接:https://pan.baidu.com/s/1EhPMVLOQlLNN55ndrLbh4Q 提取码:7799 。如要使用,请指定参超到数据集地址/flower(eg: --data_path /.../.../.../flower)
三个训练脚本中,train_sample.py是最简单的实现;train.py是升级版的实现,具体改进点见train.py脚本中的注释; train_distrubuted.py支持多gpu分布式训练。
最后,test.py是推理脚本。dataload中是数据集加载代码;utils是封装的功能包,包括学习策略,训练和验证,分布式初始化,可视化等等。