pip install whisperplus git+https://github.com/huggingface/transformers
pip install flash-attn --no-build-isolation
You can find the models on the HuggingFace Model Hub
To use the whisperplus library, follow the steps below for different tasks:
from whisperplus import SpeechToTextPipeline, download_youtube_to_mp3
from transformers import BitsAndBytesConfig, HqqConfig
import torch
url = "https://www.youtube.com/watch?v=di3rHkEZuUw"
audio_path = download_youtube_to_mp3(url, output_dir="downloads", filename="test")
hqq_config = HqqConfig(
nbits=4,
group_size=64,
quant_zero=False,
quant_scale=False,
axis=0,
offload_meta=False,
) # axis=0 is used by default
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
pipeline = SpeechToTextPipeline(
model_id="distil-whisper/distil-large-v3",
quant_config=hqq_config,
flash_attention_2=True,
)
transcript = pipeline(
audio_path=audio_path,
chunk_length_s=30,
stride_length_s=5,
max_new_tokens=128,
batch_size=100,
language="english",
return_timestamps=False,
)
print(transcript)
from whisperplus.pipelines import mlx_whisper
from whisperplus import download_youtube_to_mp3
url = "https://www.youtube.com/watch?v=1__CAdTJ5JU"
audio_path = download_youtube_to_mp3(url)
text = mlx_whisper.transcribe(
audio_path, path_or_hf_repo="mlx-community/whisper-large-v3-mlx"
)["text"]
print(text)
from whisperplus.pipelines.lightning_whisper_mlx import LightningWhisperMLX
from whisperplus import download_youtube_to_mp3
url = "https://www.youtube.com/watch?v=1__CAdTJ5JU"
audio_path = download_youtube_to_mp3(url)
whisper = LightningWhisperMLX(model="distil-large-v3", batch_size=12, quant=None)
output = whisper.transcribe(audio_path=audio_path)["text"]
from whisperplus.pipelines.summarization import TextSummarizationPipeline
summarizer = TextSummarizationPipeline(model_id="facebook/bart-large-cnn")
summary = summarizer.summarize(transcript)
print(summary[0]["summary_text"])
from whisperplus.pipelines.long_text_summarization import LongTextSummarizationPipeline
summarizer = LongTextSummarizationPipeline(model_id="facebook/bart-large-cnn")
summary_text = summarizer.summarize(transcript)
print(summary_text)
You must confirm the licensing permissions of these two models.
- https://huggingface.co/pyannote/speaker-diarization-3.1
- https://huggingface.co/pyannote/segmentation-3.0
pip install -r requirements/speaker_diarization.txt
pip install -U "huggingface_hub[cli]"
huggingface-cli login
from whisperplus.pipelines.whisper_diarize import ASRDiarizationPipeline
from whisperplus import download_youtube_to_mp3, format_speech_to_dialogue
audio_path = download_youtube_to_mp3("https://www.youtube.com/watch?v=mRB14sFHw2E")
device = "cuda" # cpu or mps
pipeline = ASRDiarizationPipeline.from_pretrained(
asr_model="openai/whisper-large-v3",
diarizer_model="pyannote/speaker-diarization-3.1",
use_auth_token=False,
chunk_length_s=30,
device=device,
)
output_text = pipeline(audio_path, num_speakers=2, min_speaker=1, max_speaker=2)
dialogue = format_speech_to_dialogue(output_text)
print(dialogue)
pip install sentence-transformers ctransformers langchain
from whisperplus.pipelines.chatbot import ChatWithVideo
chat = ChatWithVideo(
input_file="trascript.txt",
llm_model_name="TheBloke/Mistral-7B-v0.1-GGUF",
llm_model_file="mistral-7b-v0.1.Q4_K_M.gguf",
llm_model_type="mistral",
embedding_model_name="sentence-transformers/all-MiniLM-L6-v2",
)
query = "what is this video about ?"
response = chat.run_query(query)
print(response)
pip install autollm>=0.1.9
from whisperplus.pipelines.autollm_chatbot import AutoLLMChatWithVideo
# service_context_params
system_prompt = """
You are an friendly ai assistant that help users find the most relevant and accurate answers
to their questions based on the documents you have access to.
When answering the questions, mostly rely on the info in documents.
"""
query_wrapper_prompt = """
The document information is below.
---------------------
{context_str}
---------------------
Using the document information and mostly relying on it,
answer the query.
Query: {query_str}
Answer:
"""
chat = AutoLLMChatWithVideo(
input_file="input_dir", # path of mp3 file
openai_key="YOUR_OPENAI_KEY", # optional
huggingface_key="YOUR_HUGGINGFACE_KEY", # optional
llm_model="gpt-3.5-turbo",
llm_max_tokens="256",
llm_temperature="0.1",
system_prompt=system_prompt,
query_wrapper_prompt=query_wrapper_prompt,
embed_model="huggingface/BAAI/bge-large-zh", # "text-embedding-ada-002"
)
query = "what is this video about ?"
response = chat.run_query(query)
print(response)
from whisperplus.pipelines.text2speech import TextToSpeechPipeline
tts = TextToSpeechPipeline(model_id="suno/bark")
audio = tts(text="Hello World", voice_preset="v2/en_speaker_6")
pip install moviepy
apt install imagemagick libmagick++-dev
cat /etc/ImageMagick-6/policy.xml | sed 's/none/read,write/g'> /etc/ImageMagick-6/policy.xml
from whisperplus.pipelines.whisper_autocaption import WhisperAutoCaptionPipeline
from whisperplus import download_youtube_to_mp4
video_path = download_youtube_to_mp4(
"https://www.youtube.com/watch?v=di3rHkEZuUw",
output_dir="downloads",
filename="test",
) # Optional
caption = WhisperAutoCaptionPipeline(model_id="openai/whisper-large-v3")
caption(video_path=video_path, output_path="output.mp4", language="english")
pip install pre-commit
pre-commit install
pre-commit run --all-files
This project is licensed under the terms of the Apache License 2.0.
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}