Skip to content

marsbroshok/challenge_cnn_tf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Anomaly detection and classification for ECG (Electrocardiography)

This is a python code to train CNN model, and run evaluation or prediction on ECG (Electrocardiography) data challenge to detect invertions in ECG data.

NOTE: Sadly, I'm not the owner of the data, try to ask if dataset is available at git repository Détection d'inversions ECG

CNN model defined with Keras framework and used Tensorflow backend.

Model Architecture

Model architecture motivated by the current state-of-the-art in image processing - Convolutional Neural Networks.

Contrary to images, ECG signal is 1D signal. So convolutions are applied as 1D filters.

This model has a simple architecture:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input (InputLayer)           (None, 750, 12)           0         
_________________________________________________________________
conv1d_1 (Conv1D)            (None, 748, 64)           2368      
_________________________________________________________________
max_pooling1d_1  (MaxPooling (None, 374, 64)           0         
_________________________________________________________________
conv1d_2 (Conv1D)            (None, 372, 128)          24704     
_________________________________________________________________
max_pooling1d_2  (MaxPooling (None, 186, 128)          0         
_________________________________________________________________
conv1d_3 (Conv1D)            (None, 184, 256)          98560     
_________________________________________________________________
max_pooling1d_3  (MaxPooling (None, 92, 256)           0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 23552)             0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 23552)             0         
_________________________________________________________________
output (Dense)               (None, 1)                 23553     
=================================================================
Total params: 149,185.0
Trainable params: 149,185.0

Model trained with cross entropy loss function, max of 20 epochs and early stopping option when there are no improvement in loss function for more that 3 epochs.

On MacBook Pro 13" (2015) CPU training takes around 3 min.

Notes on training: training dataset contains around 1K samples and to improve generalisation capabilities of the network there is a simple data augmentation method in model.py script. For every original sample there are 5 more samples generated with random horizontal shift (we can say 'in timeline'). So the total volume of training data is higher that the original input data.

Requirements

This script tested in the following environment:

  • Python 2.7
  • TensorFlow 1.0 (CPU-only)
  • Keras 2.0.2
  • Numpy 1.12.0
  • h5py 2.6.0
  • MacOS Sierra

How To

Install python requirements:

pip install --requirement requirements.txt

Usage:

python  model.py [-h] --run-mode {TRAIN,EVAL,PRED} --data-csv DATA_CSV 
						  --labels-csv LABELS_CSV [--model-name MODEL_NAME]

where arguments are:

  -h, --help            show this help message and exit
  --run-mode {TRAIN,EVAL,PRED}
                        Perform one of the following operations on model use
                        these commands: TRAIN : train model, EVAL : evaluate
                        model PRED : make prediction with model
  --data-csv DATA_CSV   Raw data CSV file
  --labels-csv LABELS_CSV
                        Labels CSV file. Labels are ignored in PRED mode
  --model-name MODEL_NAME
                        Optional model name to be added as suffix to output
                        files

For example, if you have your train data in the file input_training.csv and target labels in output_training.csv, then this command will train model and save it with suffix my_cnn:

python model.py --run-mode TRAIN \
                --data-csv input_training.csv \
                --labels-csv output_training.csv \
     
     
                --model-name my_cnn

Credits & Links

https://www.tensorflow.org/

https://keras.io/


Alexander Usoltsev 2017

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages