Code for paper Chinese clinical named entity recognition with variant neural structures based on BERT methods
Paper url: https://www.sciencedirect.com/science/article/pii/S1532046420300502
We pre-trained BERT model to improve the performance of Chinese CNER. Different layers such as Long Short-Term Memory (LSTM) and Conditional Random Field (CRF) were used to extract the text features and decode the predicted tags respectively. And we also proposed a new strategy to incorporate dictionary features into the model. Radical features of Chinese characters were also used to improve the model performance.
For replication, we uploaded two models in Baidu Netdisk.
Link: https://pan.baidu.com/s/1obzG6OSbu77duhusWg2xmQ Code: k53q
To replicate the result of CCKS-2018 dataset
python main.py \
--data_dir=data/ccks_2018 \
--bert_model=model/ \
--output_dir=./output \
--terminology_dicts_path="{'medicine':'data/ccks_2018/drug_dict.txt','surgery':'data/ccks_2018/surgery_dict.txt'}" \
--radical_dict_path data/radical_dict.txt \
--constant=0 \
--add_radical_or_not=True \
--radical_one_hot=False \
--radical_emb_dim=20 \
--max_seq_length=480 \
--do_train=True \
--do_eval=True \
--train_batch_size=6 \
--eval_batch_size=4 \
--hidden_dim=64 \
--learning_rate=5e-5 \
--num_train_epochs=5 \
--gpu_id=3 \
Method | P | R | F1 |
---|---|---|---|
FT-BERT+BiLSTM+CRF | 88.57 | 89.02 | 88.80 |
+dictionary | 88.58 | 89.17 | 88.87 |
+radical(one-hot encoding) | 88.51 | 89.39 | 88.95 |
+radical(random embedding) | 89.24 | 89.11 | 89.17 |
+dictionary +radical | 89.42 | 89.22 | 89.32 |
ensemble | 89.59 | 89.54 | 89.56 |
Team Name | Method | F1 |
---|---|---|
Yang and Huang (2018) | CRF(feature-rich + rule) | 89.26 |
heiheihahei | LSTM-CRF(ensemble) | 88.92 |
Luo et al.(2018) | LSTM-CRF(ensemble) | 88.63 |
dous12 | - | 88.37 |
chengachengcheng | - | 88.30 |
NUBT-IBDL | - | 87.62 |
Our | FT-BERT+BiLSTM +CRF+Dictionary(ensemble) | 89.56 |
Method | P | R | F1 |
---|---|---|---|
FT-BERT+BiLSTM+CRF | 91.64 | 90.98 | 91.31 |
+dictionary | 91.49 | 90.97 | 91.23 |
+radical(one-hot encoding) | 91.83 | 90.80 | 91.35 |
+radical(random embedding) | 92.07 | 90.77 | 91.42 |
+dictionary+radical | 91.76 | 90.88 | 91.32 |
ensemble | 92.06 | 91.15 | 91.60 |
Team Name | Method | F1 |
---|---|---|
Qiu et al. (2018b) | RD-CNN-CRF | 91.32 |
Wang et al. (2019) | BiLSTM-CRF+Dictionary | 91.24 |
Hu et al. (2017) | BiLSTM-FEA(ensemble) | 91.03 |
Zhang et al. (2018) | BiLSTM-CRF(mt+att+ms) | 90.52 |
Xia and Wang (2017) | BiLSTM-CRF(ensemble) | 89.88 |
Ouyang et al. (2017) | BiRNN-CRF | 88.85 |
Li et al. (2017) | BiLSTM-CRF(specialized +lexicons) | 87.95 |
Our | FT-BERT+BiLSTM +CRF+Dictionary(ensemble) | 91.60 |