Skip to content

louhz/UQPINNs

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adversarial Uncertainty Quantification in Physics-Informed Neural Networks

We present a deep learning framework for quantifying and propagating uncertainty in systems governed by non-linear differential equations using physics-informed neural networks. Specifically, we employ latent variable models to construct probabilistic representations for the system states, and put forth an adversarial inference procedure for training them on data, while constraining their predictions to satisfy given physical laws expressed by partial differential equations. Such physics-informed constraints provide a regularization mechanism for effectively training deep generative models as surrogates of physical systems in which the cost of data acquisition is high, and training data-sets are typically small. This provides a flexible framework for characterizing uncertainty in the outputs of physical systems due to randomness in their inputs or noise in their observations that entirely bypasses the need for repeatedly sampling expensive experiments or numerical simulators. We demonstrate the effectiveness of our approach through a series of examples involving uncertainty propagation in non-linear conservation laws, and the discovery of constitutive laws for flow through porous media directly from noisy data.

This paper is published on Journal of Computational Physics.

  • Yibo Yang, Paris Perdikaris, Adversarial uncertainty quantification in physics-informed neural networks, Journal of Computational Physics, 2019, ISSN 0021-9991, https://doi.org/10.1016/j.jcp.2019.05.027.

Citation

@article{yang2019adversarial,
  title={Adversarial uncertainty quantification in physics-informed neural networks},
  author={Yang, Yibo and Perdikaris, Paris},
  journal={Journal of Computational Physics},
  volume={394},
  pages={136--152},
  year={2019},
  publisher={Elsevier}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 88.8%
  • Python 11.2%