-
Setup dataset
$ wget https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB_Final_Training_Images.zip $ unzip GTSRB_Final_Training_Images.zip $ wget https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB_Final_Test_Images.zip $ unzip GTSRB_Final_Test_Images.zip $ wget https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB_Final_Test_GT.zip $ unzip GTSRB_Final_Test_GT.zip $ mv GT-final_test.csv GTSRB/Final_Test/Images
-
Data augmentation and generate train/test pickle file
$ python gen_pickle.py
-
Training
$ python train.py [epoch 0] Mini-batch loss at 0: 491.711456 [epoch 0] Minibatch accuracy: 4.7% ... [epoch 1] Mini-batch loss at 63488: 24.210030 [epoch 1] Minibatch accuracy: 93.8% Test accuracy: 81.5% Model saved in file: models/deep_traffic_sign_model
-
Detection
$ python detect_traffic_sign.py [target_image_file]
MIT