Skip to content

Official Code for Memory Consistent Neural Networks for Imitation Learning

Notifications You must be signed in to change notification settings

kaustubhsridhar/MCNN

Repository files navigation

Memory-Consistent Neural Networks For Imitation Learning

arXiv | Website

Videos of MCNN agents performing dexterous manipulation tasks Videos of MCNN agents in the Franka Kitchen environment

Setup

Create env, install pytorch, install requirements.

conda create -n MCNN_env python=3.8
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt

Setup mujoco210 by following the instructions from https://github.com/openai/mujoco-py#install-mujoco. In case you run across a gcc error, please follow the trouble shooting instructions here if you have sudo access or here otherwise.

Install this package

pip install -e .

Additional setup (only for CARLA)

Instructions to install CARLA can be found here. Also note that you have to run the following for any CARLA experiments:

Open a new terminal session, and run the CARLA simulator:

CUDA_VISIBLE_DEVICES=0 bash CarlaUE4.sh -fps 20

In a second terminal window, run

./PythonAPI/util/config.py --map Town04 --delta-seconds 0.05

Use the Town03 map for carla-town-v0, and Town04 for carla-lane-v0.

Quickstart

Download the updated datasets for Adroit:

python mems_obs/download_updated_datasets.py

Train and evaluate MCNN + MLP:

python algos/td3bc_trainer.py --algo-name mem_bc --task pen-human-v1 --num_memories_frac 0.1 --Lipz 1.0 --lamda 1.0

Train and evaluate MCNN + Diffusion Policy:

cd diffusion_BC
python main.py --algo mcnn_bc --env_name pen-human-v1 --device 0 --ms online --lr_decay --num_memories_frac 0.1 --Lipz 1.0 --lamda 1.0

Replace pen-human-v1 with any of the other tasks such as (hammer-human-v1, pen-human-v1, relocate-human-v1, door-human-v1, hammer-expert-v1, pen-expert-v1, relocate-expert-v1, door-expert-v1, carla-lane-v0).

Detailed instructions for all methods

Train / Evaluate with MLP

For MCNN + MLP with neural gas memories:

python algos/td3bc_trainer.py --algo-name mem_bc --task pen-human-v1 --num_memories_frac 0.1 --Lipz 1.0 --lamda 1.0

For MCNN + MLP with random memories:

python algos/td3bc_trainer.py --algo-name mem_bc --task pen-human-v1 --num_memories_frac 0.1 --Lipz 1.0 --lamda 1.0 --use-random-memories 1

For MLP-BC:

python algos/td3bc_trainer.py --algo-name bc --task pen-human-v1

(If you'd like to run vanilla MLP-BC with oversampling of memories, please switch to the expts branch.)

For 1NN and VINN:

python algos/nearest_neighbours.py --algo-name 1nn --task pen-human-v1
python algos/nearest_neighbours.py --algo-name vinn --task pen-human-v1

For CQL with sparse reward:

python algos/cql_sparse_trainer.py --task pen-human-v1

Train / Evaluate with Diffusion BC [Wang et al., ICLR 2023] in Adroit Environments

Move to the folder:

cd diffusion_BC

For MCNN + Diffusion:

python main.py --algo mcnn_bc --env_name pen-human-v1 --device 0 --ms online --lr_decay --num_memories_frac 0.1 --Lipz 1.0 --lamda 1.0

For Diffusion-BC:

python main.py --algo bc --env_name pen-human-v1 --device 0 --ms online --lr_decay

Train / Evaluate with Diffusion Policy [Chi et al., RSS 2023] in FrankaKitchen Environments

Move to the folder, perform extra installs, and download the franka ktchen dataset:

cd diffusion_policy
pip install -e .
pip install -r more_requirements.txt
bash download_kitchen_data.sh

Then run diffusion policy BC first:

python train.py --config-dir=. --config-name=kitchen_diffusion_policy_cnn.yaml training.seed=42 training.device=cuda:0 hydra.run.dir='data/outputs/${now:%Y.%m.%d}/${now:%H.%M.%S}_${name}_${task_name}'

The above, at the very start, reads some downloaded multitask mujoco logs and saves all the observations/actions (in diffusion_policy/data/kitchen/kitchen_demos_multitask/) so that neural gas and memories can be created.

Create neural gas and memories:

python mems_obs/create_gng_incrementally.py --name kitchen --num_memories_frac 0.1
python mems_obs/update_data.py --name kitchen --num_memories_frac 0.1

Feel free to replace 0.1 with any value less than one.

Finally, run MCNN + Diffusion:

python train.py --config-dir=. --config-name=kitchen_mcnn_diffusion_cnn.yaml training.seed=42 training.device=cuda:0 hydra.run.dir='data/outputs/${now:%Y.%m.%d}/${now:%H.%M.%S}_${name}_${task_name}'

Train / Evaluate with Behavior Transformer (BeT)

Extra installs:

cd miniBET && pip install -e . && cd ../

For MCNN + BeT:

python algos/td3bc_trainer_with_bet.py --algo-name mem_bet --task pen-human-v1 --num_memories_frac 0.1 --Lipz 1.0 --lamda 1.0

For BeT-BC:

python algos/td3bc_trainer_with_bet.py --algo-name bet --task pen-human-v1

Detailed instructions for creating datasets

Collect data

Download d4rl datasets, resnet models for CARLA embeddings, and franka kitchen dataset:

python data/download_d4rl_datasets.py
python data/download_nocrash_models.py
cd diffusion_policy && bash download_kitchen_data.sh && cd ../

Gnerate CARLA embeddings

python data/generate_carla_models.py

Create Memories with Neural Gas

Create memories:

python mems_obs/create_gng_incrementally.py --name pen-human-v1 --num_memories_frac 0.1

Replace name with any of the other tasks and num_memories_frac with any value less than 1. In the paper, we use 0.025, 0.05, and 0.1 for num_memories_frac. (Note: simply use --name kitchen for the franka kitchen task)

Update (downloaded) datasets by adding memory and memory_target to every transition:

python mems_obs/update_data.py --name pen-human-v1 --num_memories_frac 0.1

Similar to above, replace name with any of the other tasks and num_memories_frac with any value less than 1.

Create Random Memories

Create random subset of all observations as memories and update (downloaded) datasets by adding memory and memory_target to every transition:

python mems_obs/update_data_random_mems.py --name pen-human-v1 --num_memories_frac 0.1

Similar to above, replace name with any of the other tasks and num_memories_frac with any value less than 1.

BibTeX

If you find this codebase or our paper helpful, please consider citing us:

@article{sridhar2023memory,
  title={Memory-consistent neural networks for imitation learning},
  author={Sridhar, Kaustubh and Dutta, Souradeep and Jayaraman, Dinesh and Weimer, James and Lee, Insup},
  journal={arXiv preprint arXiv:2310.06171},
  year={2023}
}

OR

@inproceedings{
  sridhar2024memoryconsistent,
  title={Memory-Consistent Neural Networks for Imitation Learning},
  author={Kaustubh Sridhar and Souradeep Dutta and Dinesh Jayaraman and James Weimer and Insup Lee},
  booktitle={The Twelfth International Conference on Learning Representations},
  year={2024},
  url={https://openreview.net/forum?id=R3Tf7LDdX4}
}

About

Official Code for Memory Consistent Neural Networks for Imitation Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published