-
Notifications
You must be signed in to change notification settings - Fork 5.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add GruNonlinearityComponent(by Dan) and OutputGruNonlinearityCompone…
…nt; moving aroun some sources in nnet3 to avoid very large files rename nnet-combined-component.{h,cc} and str case Update get_saturation.pl for fast gru version. Get matched resutls
- Loading branch information
Showing
14 changed files
with
5,495 additions
and
1,840 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,310 @@ | ||
#!/bin/bash | ||
# Apache 2.0 | ||
|
||
# This is based on TDNN_OPGRU_1A, but using the FastNormOPGRU to replace the NormPGRU. | ||
# Different from the vanilla OPGRU, Norm-OPGRU adds batchnorm in its output (forward direction) | ||
# and renorm in its recurrence. Experiments show that the TDNN-NormOPGRU could achieve similar | ||
# results than TDNN-LSTMP and BLSTMP in both large or small data sets (80 ~ 2300 Hrs). | ||
|
||
# ./local/chain/compare_wer_general.sh --looped tdnn_opgru_1a_sp tdnn_opgru_1b_sp | ||
# System tdnn_opgru_1a_sp tdnn_opgru_1b_sp | ||
# WER on train_dev(tg) 12.31 12.41 | ||
# [looped:] 12.26 12.38 | ||
# WER on train_dev(fg) 11.49 11.60 | ||
# [looped:] 11.43 11.65 | ||
# WER on eval2000(tg) 14.9 15.1 | ||
# [looped:] 15.0 15.1 | ||
# WER on eval2000(fg) 13.5 13.7 | ||
# [looped:] 13.5 13.7 | ||
# Final train prob -0.068 -0.070 | ||
# Final valid prob -0.091 -0.092 | ||
# Final train prob (xent) -0.879 -0.889 | ||
# Final valid prob (xent) -0.9667 -0.9723 | ||
|
||
|
||
|
||
set -e | ||
|
||
# configs for 'chain' | ||
stage=0 | ||
train_stage=-10 | ||
get_egs_stage=-10 | ||
speed_perturb=true | ||
dir=exp/chain/tdnn_opgru_1b # Note: _sp will get added to this if $speed_perturb == true. | ||
decode_iter= | ||
decode_dir_affix= | ||
|
||
# training options | ||
leftmost_questions_truncate=-1 | ||
chunk_width=150 | ||
chunk_left_context=40 | ||
chunk_right_context=0 | ||
xent_regularize=0.025 | ||
self_repair_scale=0.00001 | ||
label_delay=5 | ||
dropout_schedule='0,[email protected],[email protected],0' | ||
# decode options | ||
extra_left_context=50 | ||
extra_right_context=0 | ||
frames_per_chunk= | ||
test_online_decoding= | ||
|
||
remove_egs=false | ||
common_egs_dir= | ||
|
||
affix= | ||
# End configuration section. | ||
echo "$0 $@" # Print the command line for logging | ||
|
||
. ./cmd.sh | ||
. ./path.sh | ||
. ./utils/parse_options.sh | ||
|
||
if ! cuda-compiled; then | ||
cat <<EOF && exit 1 | ||
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA | ||
If you want to use GPUs (and have them), go to src/, and configure and make on a machine | ||
where "nvcc" is installed. | ||
EOF | ||
fi | ||
|
||
# The iVector-extraction and feature-dumping parts are the same as the standard | ||
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already | ||
# run those things. | ||
|
||
suffix= | ||
if [ "$speed_perturb" == "true" ]; then | ||
suffix=_sp | ||
fi | ||
|
||
dir=$dir${affix:+_$affix} | ||
dir=${dir}$suffix | ||
train_set=train_nodup$suffix | ||
ali_dir=exp/tri4_ali_nodup$suffix | ||
treedir=exp/chain/tri5_7d_tree$suffix | ||
lang=data/lang_chain_2y | ||
|
||
|
||
# if we are using the speed-perturbed data we need to generate | ||
# alignments for it. | ||
local/nnet3/run_ivector_common.sh --stage $stage \ | ||
--speed-perturb $speed_perturb \ | ||
--generate-alignments $speed_perturb || exit 1; | ||
|
||
|
||
if [ $stage -le 9 ]; then | ||
# Get the alignments as lattices (gives the CTC training more freedom). | ||
# use the same num-jobs as the alignments | ||
nj=$(cat exp/tri4_ali_nodup$suffix/num_jobs) || exit 1; | ||
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ | ||
data/lang exp/tri4 exp/tri4_lats_nodup$suffix | ||
rm exp/tri4_lats_nodup$suffix/fsts.*.gz # save space | ||
fi | ||
|
||
|
||
if [ $stage -le 10 ]; then | ||
# Create a version of the lang/ directory that has one state per phone in the | ||
# topo file. [note, it really has two states.. the first one is only repeated | ||
# once, the second one has zero or more repeats.] | ||
rm -rf $lang | ||
cp -r data/lang $lang | ||
silphonelist=$(cat $lang/phones/silence.csl) || exit 1; | ||
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; | ||
# Use our special topology... note that later on may have to tune this | ||
# topology. | ||
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo | ||
fi | ||
|
||
if [ $stage -le 11 ]; then | ||
# Build a tree using our new topology. | ||
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ | ||
--leftmost-questions-truncate $leftmost_questions_truncate \ | ||
--context-opts "--context-width=2 --central-position=1" \ | ||
--cmd "$train_cmd" 7000 data/$train_set $lang $ali_dir $treedir | ||
fi | ||
|
||
if [ $stage -le 12 ]; then | ||
echo "$0: creating neural net configs using the xconfig parser"; | ||
|
||
num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') | ||
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python) | ||
gru_opts="dropout-per-frame=true dropout-proportion=0.0 gru-nonlinearity-options=\"max-change=0.75\"" | ||
|
||
mkdir -p $dir/configs | ||
cat <<EOF > $dir/configs/network.xconfig | ||
input dim=100 name=ivector | ||
input dim=40 name=input | ||
# please note that it is important to have input layer with the name=input | ||
# as the layer immediately preceding the fixed-affine-layer to enable | ||
# the use of short notation for the descriptor | ||
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat | ||
# the first splicing is moved before the lda layer, so no splicing here | ||
relu-batchnorm-layer name=tdnn1 dim=1024 | ||
relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=1024 | ||
relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=1024 | ||
# check steps/libs/nnet3/xconfig/gru.py for the other options and defaults | ||
fast-norm-opgru-layer name=opgru1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts | ||
relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=1024 | ||
relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=1024 | ||
fast-norm-opgru-layer name=opgru2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts | ||
relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=1024 | ||
relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=1024 | ||
fast-norm-opgru-layer name=opgru3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts | ||
## adding the layers for chain branch | ||
output-layer name=output input=opgru3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5 | ||
# adding the layers for xent branch | ||
# This block prints the configs for a separate output that will be | ||
# trained with a cross-entropy objective in the 'chain' models... this | ||
# has the effect of regularizing the hidden parts of the model. we use | ||
# 0.5 / args.xent_regularize as the learning rate factor- the factor of | ||
# 0.5 / args.xent_regularize is suitable as it means the xent | ||
# final-layer learns at a rate independent of the regularization | ||
# constant; and the 0.5 was tuned so as to make the relative progress | ||
# similar in the xent and regular final layers. | ||
output-layer name=output-xent input=opgru3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 | ||
EOF | ||
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ | ||
fi | ||
|
||
if [ $stage -le 13 ]; then | ||
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then | ||
utils/create_split_dir.pl \ | ||
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage | ||
fi | ||
|
||
steps/nnet3/chain/train.py --stage $train_stage \ | ||
--cmd "$decode_cmd" \ | ||
--feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ | ||
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \ | ||
--chain.xent-regularize $xent_regularize \ | ||
--chain.leaky-hmm-coefficient 0.1 \ | ||
--chain.l2-regularize 0.00005 \ | ||
--chain.apply-deriv-weights false \ | ||
--chain.lm-opts="--num-extra-lm-states=2000" \ | ||
--trainer.num-chunk-per-minibatch 64 \ | ||
--trainer.frames-per-iter 1200000 \ | ||
--trainer.max-param-change 2.0 \ | ||
--trainer.num-epochs 4 \ | ||
--trainer.optimization.shrink-value 0.99 \ | ||
--trainer.optimization.num-jobs-initial 3 \ | ||
--trainer.optimization.num-jobs-final 16 \ | ||
--trainer.optimization.initial-effective-lrate 0.001 \ | ||
--trainer.optimization.final-effective-lrate 0.0001 \ | ||
--trainer.optimization.momentum 0.0 \ | ||
--trainer.deriv-truncate-margin 8 \ | ||
--egs.stage $get_egs_stage \ | ||
--egs.opts "--frames-overlap-per-eg 0" \ | ||
--egs.chunk-width $chunk_width \ | ||
--egs.chunk-left-context $chunk_left_context \ | ||
--egs.chunk-right-context $chunk_right_context \ | ||
--trainer.dropout-schedule $dropout_schedule \ | ||
--egs.chunk-left-context-initial 0 \ | ||
--egs.chunk-right-context-final 0 \ | ||
--egs.dir "$common_egs_dir" \ | ||
--cleanup.remove-egs $remove_egs \ | ||
--feat-dir data/${train_set}_hires \ | ||
--tree-dir $treedir \ | ||
--lat-dir exp/tri4_lats_nodup$suffix \ | ||
--dir $dir || exit 1; | ||
fi | ||
|
||
if [ $stage -le 14 ]; then | ||
# Note: it might appear that this $lang directory is mismatched, and it is as | ||
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from | ||
# the lang directory. | ||
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_sw1_tg $dir $dir/graph_sw1_tg | ||
fi | ||
|
||
decode_suff=sw1_tg | ||
graph_dir=$dir/graph_sw1_tg | ||
if [ $stage -le 15 ]; then | ||
[ -z $extra_left_context ] && extra_left_context=$chunk_left_context; | ||
[ -z $extra_right_context ] && extra_right_context=$chunk_right_context; | ||
[ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width; | ||
iter_opts= | ||
if [ ! -z $decode_iter ]; then | ||
iter_opts=" --iter $decode_iter " | ||
fi | ||
for decode_set in train_dev eval2000; do | ||
( | ||
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ | ||
--nj 50 --cmd "$decode_cmd" $iter_opts \ | ||
--extra-left-context $extra_left_context \ | ||
--extra-right-context $extra_right_context \ | ||
--extra-left-context-initial 0 \ | ||
--extra-right-context-final 0 \ | ||
--frames-per-chunk "$frames_per_chunk" \ | ||
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \ | ||
$graph_dir data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_${decode_suff} || exit 1; | ||
if $has_fisher; then | ||
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_sw1_{tg,fsh_fg} || exit 1; | ||
fi | ||
) & | ||
done | ||
fi | ||
|
||
if $test_online_decoding && [ $stage -le 16 ]; then | ||
# note: if the features change (e.g. you add pitch features), you will have to | ||
# change the options of the following command line. | ||
steps/online/nnet3/prepare_online_decoding.sh \ | ||
--mfcc-config conf/mfcc_hires.conf \ | ||
$lang exp/nnet3/extractor $dir ${dir}_online | ||
|
||
rm $dir/.error 2>/dev/null || true | ||
for decode_set in train_dev eval2000; do | ||
( | ||
# note: we just give it "$decode_set" as it only uses the wav.scp, the | ||
# feature type does not matter. | ||
steps/online/nnet3/decode.sh --nj 50 --cmd "$decode_cmd" $iter_opts \ | ||
--acwt 1.0 --post-decode-acwt 10.0 \ | ||
$graph_dir data/${decode_set}_hires \ | ||
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1; | ||
if $has_fisher; then | ||
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1; | ||
fi | ||
) || touch $dir/.error & | ||
done | ||
wait | ||
if [ -f $dir/.error ]; then | ||
echo "$0: something went wrong in online decoding" | ||
exit 1 | ||
fi | ||
fi | ||
|
||
if [ $stage -le 17 ]; then | ||
rm $dir/.error 2>/dev/null || true | ||
for decode_set in train_dev eval2000; do | ||
( | ||
steps/nnet3/decode_looped.sh \ | ||
--acwt 1.0 --post-decode-acwt 10.0 \ | ||
--nj 50 --cmd "$decode_cmd" $iter_opts \ | ||
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \ | ||
$graph_dir data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg_looped || exit 1; | ||
if $has_fisher; then | ||
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg}_looped || exit 1; | ||
fi | ||
) & | ||
done | ||
wait | ||
if [ -f $dir/.error ]; then | ||
echo "$0: something went wrong in looped decoding" | ||
exit 1 | ||
fi | ||
fi | ||
|
||
wait; | ||
exit 0; |
Oops, something went wrong.