Skip to content

kAI-swa/M2ASDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Approach

M2ASDA

To address the aforementioned challenges and limitations, we propose an innovative Generative Adverserial Network (GAN)-based framework named Multimodal and Multi-sample Anomalous Single-cell Detection and Annotation (M2ASDA). M2ASDA pioneers in using annotation-free, normal scRNA-seq dataset as reference to detect and subtype ASCs across multiple modalities and target samples. This approach integrates three essential tasks of DAASC(anomaly detection, alignment, and annotation) into a cohesive, three-phase pipeline

Architecture

m2asda/
|-- Net/
|   |-- __init__.py/
|   |-- _net.py
|   |-- _unit.py
|   |--classifier.py
|   |--discriminator.py
|   |--generator.py
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|-- __init__.py
|--  _pretrain.py
|-- _utils.py
|-- align.py
|-- correct.py
|-- detect.py
|-- m2asda.py
|-- subtyping.py
|-- LICENSE

Tested environment

  • CPU: Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz
  • Memory: 256 GB
  • System: Ubuntu 20.04.5 LTS
  • Python: 3.9.15