Skip to content
/ SCNet Public

"SCNet: Learning Semantic Correspondence" by Kai Han, Rafael S. Rezende, Bumsub Ham, Kwan-Yee K. Wong, Minsu Cho, Cordelia Schmid, Jean Ponce (ICCV 2017)

Notifications You must be signed in to change notification settings

k-han/SCNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCNet Code

Region matching code is contributed by Kai Han ([email protected]).

Dense matching code is contributed by Rafael S. Rezende ([email protected]).

This code is written in MATLAB, and implements the SCNet[1]. For the dataset, see our project page: https://www.di.ens.fr/willow/research/scnet.

Install Dependencies

Codes

SCNet_Matconvnet

Additional Matconvnet modules implemented for SCNet. These code should be copied into matconvnet/matlab/ folder.

SCNet

This is the primary net work training and testing code.

  • SCNet_A_init.m, SCNet_AG_init.m, SCNet_AGplus_init.m: initialize the SCNet_A, SCNet_AG, SCNet_AG+.

  • SCNet_A.m, SCNet_AG.m, SCNet_AGplus.m: train SCNet_A, SCNet_AG, SCNet_AG+.

  • eva_PCR_mIoU_SCNet_A.m, eva_PCR_mIoU_SCNet_AG.m, eva_PCR_mIoU_SCNet_AGplus.m: evaluate the trained nets.

  • eva_PCR_mIoU_ImageNet_SCNet_A.m, eva_PCR_mIoU_ImageNet_SCNet_AG.m, eva_PCR_mIoU_ImageNet_SCNet_AGplus.m: evaluate SCNets with ImageNet pretrained parameters, i.e., SCNets without training.

SCNet_Baselines

Comparison code for our SCNet features and HOG features with NAM, PHM and LOM in Proposal Flow [2, 3].

  • NAM_HOG_eva.m, PHM_HOG_eva.m, LOM_HOG_eva.m: evaluate NAM, PHM, and LOM with HOG features.

  • NAM_SCNet_eva.m, PHM_SCNet_eva.m, LOM_SCNet_eva.m: evaluate NAM, PHM, and LOM with learned SCNet features.

  • HOG_SCNet_AG_eva.m: replace the learned SCNet feature by HOG feature in SCNet_AG model.

Data

We used PF-PASCAL, PF-WILLOW, PASCAL Parts and CUB data sets and follows Proposal Flow[2, 3] to generate our trainging data.

Triaining data preparation code is put in PF-PASCAL-code folder.

Notes

  • The code is provided for academic use only. Use of the code in any commercial or industrial related activities is prohibited.
  • If you use our code or dataset, please cite the paper.
@InProceedings{han2017scnet,
author = {Kai Han and Rafael S. Rezende and Bumsub Ham and Kwan-Yee K. Wong and Minsu Cho and Cordelia Schmid and Jean Ponce},
title = {SCNet: Learning Semantic Correspondence},
booktitle = {International Conference on Computer Vision (ICCV)},
year = {2017}
}

References

[1] Kai Han, Rafael S. Rezende, Bumsub Ham, Kwan-Yee K. Wong, Minsu Cho, Cordelia Schmid, Jean Ponce, "SCNet: Learning Semantic Correspondence", International Conference on Computer Vision (ICCV), 2017.

[2] Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce, "Proposal Flow: Semantic Correspondences from Object Proposals", IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 2017

[3] Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce, "Proposal Flow", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

About

"SCNet: Learning Semantic Correspondence" by Kai Han, Rafael S. Rezende, Bumsub Ham, Kwan-Yee K. Wong, Minsu Cho, Cordelia Schmid, Jean Ponce (ICCV 2017)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published