Skip to content

jjbrophy47/daw

Repository files navigation

DAW RF: Data AWare Random Forests

Github License

daw is a python library that builds random forest models and keeps statistics about the data in the model to enable post-hoc adversarial robustness analysis.

Quickstart

Simple example that trains a DAW forest regressor.

import daw
import numpy as np

# training data
X_train = np.array([[0, 1], [0, 1], [0, 1], [1, 0], [1, 0]])
y_train = np.array([0.5, 0.7, 0.2, 1.1, 0.25])

X_test = np.array([[1, 0]])  # test instance

# train a DAW RF regression model
rf = daw.RandomForestRegressor(
	n_estimators=100,
	max_depth=3,
	k=5,  # no. thresholds to consider per attribute
	topd=0,  # no. random node layers
	criterion='absolute_error',  # 'absolute_error' or 'squared_error'
	random_state=1
).fit(X_train, y_train)

rf.predict(X_test)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published