Skip to content
/ pyts Public
forked from johannfaouzi/pyts

A Python package for time series transformation and classification

License

Notifications You must be signed in to change notification settings

jgqysu/pyts

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Welcome to pyts, a Python package for time series transformation and classification !

pyts provides an implementation of:

  • Transformation :
    • StandardScaler : zero mean and unit variance for each time series
    • PAA : Piecewise Aggregate Approximation
    • SAX : Symbolic Aggregate approXimation
    • VSM : Vector Space Model
    • GAF : Grammian Angular Field
    • MTF : Markov Transition Field
  • Classification :
    • SAX-VSM : algorithm based on SAX-VSM transformation that uses tf-idf statistics to perform classification
    • kNN : k nearest neighbors (scikit-learn implementation) with two more metrics : DTW and FastDTW

pyts provides three modules:

  • transformation
  • classification
  • visualization

Notes:

  • This package follows the spirit of scikit-learn : transformers and classifiers can be used with Pipeline and GridSearchCV. Thus, every class from transformers or classifiers expect all the time series to have the same length.
  • The module visualization allows you to see what most transformers do (PAA, SAX, PAA-SAX, GAF, MTF) as well as DTW and FastDTW.

0. Installation

0.1 Installation with pip

pyts is available on PyPI and can be easily installed with the command pip:

$ pip install pyts

0.2 Package dependencies

pyts requires the following packages to be installed:

  • numpy
  • scipy
  • scikit-learn
  • matplotlib
  • math

1. Notations

We consider our dataset to have the following requirements:

  • X is a numpy.ndarray with shape (n_samples, n_features).
  • y is a numpy.array of length n_samples.

You can simulate a toy dataset with the following code:

import numpy as np
from scipy.stats import norm
	
n_samples = 10
n_features = 48
n_classes = 2
	
delta = 0.5
dt = 1
x = 0.
	
X = np.zeros((n_samples, n_features))
X[:, 0] = x
	
for i in range(n_samples):
    start = x
    for k in range(1, n_features):
        start += norm.rvs(scale=delta**2 * dt)
        X[i][k] = start
	
y = np.random.randint(n_classes, size=n_samples)

You can easily plot a time series with the function plot_ts from the module visualization:

from pyts.visualization import plot_ts

plot_ts(X[0])

2. StandardScaler

Standard normalization (also known as z-normalization) is a common preprocessing step : it applies an affine transformation to a time series such that the new time series has zero mean and (almost) unit variance: we add a small term epsilon to the standard deviation before dividing (in order to prevent a division by zero and to avoid over-amplification of an eventual background noise).

It is implemented as a class named StandardScaler(epsilon) from the module transformation.

from pyts.transformation import StandardScaler

standardscaler = StandardScaler(epsilon=1e-2)
X_standardized = standardscaler.transform(X)

The function plot_standardscaler from the module visualization allows you to see the time series before and after the transformation.

from pyts.visualization import plot_standardscaler

plot_standardscaler(X[0])

3. Piecewise Aggregation Approximation (PAA)

Piecewise Aggregation Approximation is a dimension reduction technique. It splits the time series into bins and computes the mean inside each bin. It returns the sample of means. It is implemented as a class named PAA(window_size=None, output_size=None, overlapping=True), from the module transformation.

You can specify either window_size or output_size. If you specify output_size, the returned time series will be of length output_size. You can also specify overlapping, which will determine if each bin has the same number of elements (overlapping=True) or if each datapoint belong to only one bin (overlapping=False). If you specify window_size, the size of each bin will be equal to window_size and overlapping will be ignored.

Here is the code to perform the transformation:

from pyts.transformation import PAA

paa = PAA(window_size=None, output_size=8, overlapping=True)
X_paa = paa.transform(X_standardized)

The function plot_paa from the module visualization allows you to see the time series before and after the transformation.

from pyts.visualization import plot_paa

plot_paa(X_standardized[0], window_size=None, output_size=8, overlapping=True, marker='o')

4. Symbolic Aggregation approXimation (SAX)

Symbolic Aggregation approXimation transforms a time series into a string. More precisely, given a number of bins, it transforms each datapoint (real number) into a letter (from an alphabet) depending on the bin the datapoint belongs to. For instance, If your alphabet is "abcde", then the state space changes from R to {a,b,c,d,e}. It is a dimension reduction technique for the output space.

Here is the code to perform the transformation:

from pyts.transformation import SAX

sax = SAX(n_bins=5, quantiles='gaussian')
X_sax = sax.transform(X_paa)

The function plot_sax from the module visualization allows you to see the time series before and after the transformation. It may help you understand what SAX does.

from pyts.visualization import plot_sax

plot_sax(X_paa[0], n_bins=5, quantiles='gaussian')

The function plot_paa_sax from the module visualization allows you to see both PAA and SAX transformations on the same figure.

from pyts.visualization import plot_paa_sax

plot_paa_sax(X_standardized[0], window_size=None, output_size=8, overlapping=True, n_bins=5, quantiles='gaussian')

5. Vector Space Model (VSM)

Vector Space Model transforms a long string into a set of small words. It slides a window with a step of size 1 across the long string and extract each words. It is implemented as a class named VSM(window_size=4, numerosity_reduction=True). It is possible that the same word occurs several times in a row. If numerosity_reduction=True, only one will be kept. If numerosity_reduction=False, all words are kept.

Here is the code to perform the transformation:

from pyts.transformation import VSM

vsm = VSM(window_size=4, numerosity_reduction=True)
X_vsm = vsm.transform(X_sax)

6. Gramian Angular Field (GAF)

Gramian Angular Field transforms a time series into an image. First the time series is represented in a polar coordinate system. Then two matrices can be computed : the cosine of the summation of angles (Gramian Angular Summation Field - GASF) or the sine of the difference of angles (Gramian Angular Difference Field - GADF). One possible issue is the size of these matrices: if the size of the time series is n, then the size of the matrix is (n, n). To avoid this issue, PAA can be applied to reduce the size of the time series first.

Both methods are implemented in two classes : GASF(image_size=32, overlapping=False, scale='-1') and GADF(image_size=32, overlapping=False, scale='-1') from the module transformation. image_size is an integer (since the output will be a square matrix, only one dimension needs to be specified) and corresponds to output_size for PAA. overlapping is the parameter for PAA too. In order to use the polar coordinate system, the time series should be normalized. If scale='-1', the time series is normalized into [-1,1]. If scale='0', the time series is normalized into [0,1].

Here is the code to perform the transformation:

from pyts.transformation import GASF, GADF

gasf = GASF(image_size=24, overlapping=False, scale='-1')
X_gasf = gasf.transform(X_standardized)

gadf = GADF(image_size=24, overlapping=False, scale='-1')
X_gadf = gadf.transform(X_standardized)

The functions plot_gasf and plot_gadf from the module visualization allows you to see the image.

from pyts.visualization import plot_gasf

plot_gasf(X_standardized[0], image_size=48, overlapping=False, scale='-1')

from pyts.visualization import plot_gadf

plot_gadf(X_standardized[0], image_size=48, overlapping=False, scale='-1')

7. Markov Transition Field (MTF)

Markov Transition Field also transforms a time series into an image. First the time series is transformed into a string using SAX. This string is interpreted as a sequence of observations from a Markov Chain. Then, the matrix transition probability is computed. The issue is that temporal dependices are lost. To avoid this issue, the transition matrix is turned into a transition field. Here again, if the size of the time series is n, then the size of the matrix is (n, n). To avoid this issue, the size of the image is reduced by averaging pixels with a blurring kernel (PAA for 2D arrays).

This method is implemented as a class named MTF(image_size=32, n_bins=8, quantiles='empirical', overlapping=False) from the module transformation. image_size and overlapping are the parameters for the dimension reduction of the image (see PAA), while n_bins and quantiles are the parameters for SAX.

Here is the code to perform the transformation:

from pyts.transformation import MTF

mtf = MTF(image_size=48, n_bins=4, quantiles='empirical', overlapping=False)
X_mtf = mtf.transform(X_standardized)

The function plot_mtf from the module visualization allows you to see the image.

from pyts.visualization import plot_mtf

plot_mtf(X_standardized[0], image_size=48, n_bins=4, quantiles='empirical', overlapping=False)

8. Recurrence Plots

Recurrence plots have been introduced to visualize recurrent behaviors. The main idea is to find trajectories that are close to eachother and to observe the results as images.

Here is the code to perform the transformation:

from pyts.transformation import RecurrencePlots

rp = RecurrencePlots(dimension=3, epsilon='percentage_points', percentage=10)
X_rp = rp.transform(X_standardized)

The function plot_recurrence_plots from the module visualization allows you to see the image.

from pyts.visualization import plot_recurrence_plots

plot_recurrence_plots(X_standardized[0], dimension=3, epsilon='percentage_points', percentage=10)

9. SAX-VSM Classification

SAX-VSM is a classification method based on the SAX-VSM representation of the time series. Once this transformation is done, tf-idf statistics are computed, where a document is a time series and each corpus corresponds to a class. To predict the class with an unlabeled time series, tf is computed for this time series and the predicted label corresponds to the class that gives the highest cosine similarity between tf and its tf-idf.

Here is the code to perform a classification:

from pyts.classification import SAXVSMClassifier

clf = SAXVSMClassifier()
clf.fit(X_vsm[:80], y[:80])
y_pred = clf.predict(X_vsm[80:])
clf.score(X_vsm[80:], y[80:])

10. kNN with DTW or FastDTW

k nearest neighbors is an often used classifier when dealing with time series. Typical metrics are Minkowski distance and dynamic time warping. Unfortunately, dynamic time warping is not available with scikit-learn implementation of kNN. The class KNNClassifier from the module classification uses scikit-learn implementation of kNN but allows you to use this metric.

Here is the code to perform a classification:

from pyts.classifier import KNNClassifier

clf = KNNClassifier(metric='minkowski', p=2)
clf.fit(X_standardized[:80], y[:80])
y_pred = clf.predict(X_standardized[80:])
clf.score(X_standardized[80:], y[80:])
clf.set_params(metric='fast_dtw', metric_params={"approximation": True, "window_size": 8})
clf.fit(X_standardized[:80], y[:80])
y_pred = clf.predict(X_standardized[80:])
clf.score(X_standardized[80:], y[80:])

More about DTW and FastDTW

We refer to [4] for more information about DTW and FastDTW.

The function plot_dtw(X, Y) from the module visualization allows you to see the optimal warping path between two time series with same length.

from pyts.visualization import plot_dtw

plot_dtw(X[0], X[1])

The function plot_fastdtw(X, Y, window_size) from the module visualization allows you to see the optimal warping path between two time series with same length, as well as the region constraint.

from pyts.visualization import plot_fastdtw

plot_fastdtw(X[0], X[1], window_size=12)

11. Working with Pipeline and GridSearchCV

All the classes implemented in the modules and can be used with Pipeline and GridSearchCV from scikit-learn package.

from sklearn.pipeline import Pipeline

pipeline = Pipeline([("sc", StandardScaler()),
                     ("paa", PAA(output_size=12, overlapping=True)),
                     ("sax", SAX(n_bins=5, quantiles='gaussian')),
                     ("vsm", VSM(window_size=4, numerosity_reduction=True)),
                     ("clf", SAXVSMClassifier())
                    ])

pipeline.fit(X[:80], y[:80])
y_pred = pipeline.predict(X[80:])
pipeline.score(X[80:], y[80:])
from sklearn.model_selection import GridSearchCV

pipeline = Pipeline([("sc", StandardScaler()),
                     ("paa", PAA(output_size=13)),
                     ("sax", SAX(n_bins=5, quantiles='gaussian')),
                     ("vsm", VSM(numerosity_reduction=True)),
                     ("clf", SAXVSMClassifier())
                    ])
                    
parameters = {"paa__overlapping": [True, False], "vsm__window_size": [3, 4, 5]}

clf = GridSearchCV(pipeline, parameters)
clf.fit(X[:80], y[:80])
y_pred = clf.predict(X[80:])
clf.score(X[80:], y[80:])

References :

[1] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. Dimensionality reduction for fast similarity search in large time series databases. Knowledge and information Systems, 3(3), 263-286, 2001.

[2] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX: a Novel Symbolic Representation of Time Series. Data Mining and Knowledge Discovery, 2007.

[3] Senin Pavel, and Malinchik Sergey. SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model. Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp.1175,1180, 2013.

[4] Dynamic Time Warping (DTW). SpringerReference.

[5] Zhiguang Wang, and Tim Oates. Imaging time-series to improve classification and imputation. Proceedings of the 24th International Conference on Artificial Intelligence, 2015.

About

A Python package for time series transformation and classification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%