Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dian xt ms #29

Open
wants to merge 27 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
fix for ms2.0 training
  • Loading branch information
AmiyaSX committed Aug 23, 2023
commit eb8079ced5de25e7d1f8cc7bc88b93751dcac01c
272 changes: 136 additions & 136 deletions xt/model/dqn/dqn_cnn_ms.py
Original file line number Diff line number Diff line change
@@ -1,137 +1,137 @@
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

from zeus.common.util.register import Registers
from xt.model.model_ms import XTModel_MS
from xt.model.ms_utils import MSVariables
from xt.model.dqn.default_config import LR
from xt.model.ms_compat import ms
from xt.model.ms_compat import Conv2d, Dense, Flatten, ReLU, Adam, MSELoss, WithLossCell, MultitypeFuncGraph, \
DynamicLossScaleUpdateCell, Cast, Cell, Tensor
from zeus.common.util.common import import_config
import mindspore.ops as ops
import numpy as np

@Registers.model
class DqnCnnMS(XTModel_MS):
"""Docstring for DqnCnn."""

def __init__(self, model_info):
model_config = model_info.get('model_config', None)
import_config(globals(), model_config)

self.state_dim = model_info['state_dim']
self.action_dim = model_info['action_dim']
self.learning_rate = LR
self.dueling = model_config.get('dueling', False)
self.net = DqnCnnNet(state_dim=self.state_dim, action_dim=self.action_dim, dueling=self.dueling)
super().__init__(model_info)
self.net.compile(ms.Tensor(np.zeros((1, 84, 84, 4))).astype(ms.float32))

def create_model(self, model_info):
"""Create Deep-Q CNN network."""
loss_fn = MSELoss()
adam = Adam(params=self.net.trainable_params(), learning_rate=self.learning_rate, use_amsgrad=True)
loss_net = WithLossCell(self.net, loss_fn)
device_target = ms.get_context("device_target")
if device_target == 'Ascend':
manager = DynamicLossScaleUpdateCell(loss_scale_value=2 ** 12, scale_factor=2, scale_window=1000)
model = MyTrainOneStepCell(loss_net, adam, manager, grad_clip=True, clipnorm=10.)
else:
model = MyTrainOneStepCell(loss_net, adam, grad_clip=True, clipnorm=10.)
self.actor_var = MSVariables(self.net)
return model

def predict(self, state):
state = Tensor(state, dtype=ms.float32)
return self.net(state).asnumpy()


class DqnCnnNet(Cell):
def __init__(self, **descript):
super(DqnCnnNet, self).__init__()
self.state_dim = descript.get("state_dim")
action_dim = descript.get("action_dim")
self.dueling = descript.get("dueling")
self.convlayer1 = Conv2d(self.state_dim[2], 32, kernel_size=8, stride=4, pad_mode='valid',
weight_init="xavier_uniform")
self.convlayer2 = Conv2d(32, 64, kernel_size=4, stride=2, pad_mode='valid', weight_init="xavier_uniform")
self.convlayer3 = Conv2d(64, 64, kernel_size=3, stride=1, pad_mode='valid', weight_init="xavier_uniform")
self.relu = ReLU()
self.flattenlayer = Flatten()
_dim = (
(((self.state_dim[0] - 4) // 4 - 2) // 2 - 2)
* (((self.state_dim[1] - 4) // 4 - 2) // 2 - 2)
* 64
)
self.denselayer1 = Dense(_dim, 256, activation='relu', weight_init="xavier_uniform")
self.denselayer2 = Dense(256, action_dim, weight_init="xavier_uniform")
self.denselayer3 = Dense(256, 1, weight_init="xavier_uniform")

def construct(self, x):
out = Cast()(x.transpose((0, 3, 1, 2)), ms.float32) / 255.
out = self.convlayer1(out)
out = self.relu(out)
out = self.convlayer2(out)
out = self.relu(out)
out = self.convlayer3(out)
out = self.relu(out)
out = self.flattenlayer(out)
out = self.denselayer1(out)
value = self.denselayer2(out)
if self.dueling:
adv = self.denselayer3(out)
mean = value.sub(value.mean(axis=1, keep_dims=True))
value = adv.add(mean)
return value


_grad_scale = MultitypeFuncGraph("grad_scale")


@_grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
return grad * ops.cast(ops.Reciprocal()(scale), ops.dtype(grad))


class MyTrainOneStepCell(ms.nn.TrainOneStepWithLossScaleCell):
def __init__(self, network, optimizer, scale_sense=1, grad_clip=False, clipnorm=1.):
self.clipnorm = clipnorm
if isinstance(scale_sense, (int, float)):
scale_sense = Tensor(scale_sense, dtype=ms.float32)
super(MyTrainOneStepCell, self).__init__(network, optimizer, scale_sense)
self.grad_clip = grad_clip

def construct(self,*inputs ):
weights = self.weights
loss = self.network(*inputs)
scaling_sens = self.scale_sense
status, scaling_sens = self.start_overflow_check(loss, scaling_sens)
scaling_sens_filled = ops.ones_like(loss) * ops.cast(scaling_sens, ops.dtype(loss))
grads = self.grad(self.network, weights)(*inputs, scaling_sens_filled)
grads = self.hyper_map(ops.partial(_grad_scale, scaling_sens), grads)
if self.grad_clip:
grads = ops.clip_by_global_norm(grads, self.clipnorm)
grads = self.grad_reducer(grads)
cond = self.get_overflow_status(status, grads)
overflow = self.process_loss_scale(cond)
if not overflow:
loss = ops.depend(loss, self.optimizer(grads))
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
from zeus.common.util.register import Registers
from xt.model.model_ms import XTModel_MS
from xt.model.ms_utils import MSVariables
from xt.model.dqn.default_config import LR
from xt.model.ms_compat import ms
from xt.model.ms_compat import Conv2d, Dense, Flatten, ReLU, Adam, MSELoss, WithLossCell, MultitypeFuncGraph, \
DynamicLossScaleUpdateCell, Cast, Cell, Tensor
from zeus.common.util.common import import_config
import mindspore.ops as ops
import numpy as np
ms.set_context(mode =ms.GRAPH_MODE)
@Registers.model
class DqnCnnMS(XTModel_MS):
"""Docstring for DqnCnn."""
def __init__(self, model_info):
model_config = model_info.get('model_config', None)
import_config(globals(), model_config)
self.state_dim = model_info['state_dim']
self.action_dim = model_info['action_dim']
self.learning_rate = LR
self.dueling = model_config.get('dueling', False)
self.net = DqnCnnNet(state_dim=self.state_dim, action_dim=self.action_dim, dueling=self.dueling)
super().__init__(model_info)
self.net.compile(ms.Tensor(np.zeros((1, 84, 84, 4))).astype(ms.float32))
def create_model(self, model_info):
"""Create Deep-Q CNN network."""
loss_fn = MSELoss()
adam = Adam(params=self.net.trainable_params(), learning_rate=self.learning_rate, use_amsgrad=True)
loss_net = WithLossCell(self.net, loss_fn)
device_target = ms.get_context("device_target")
if device_target == 'Ascend':
manager = DynamicLossScaleUpdateCell(loss_scale_value=2 ** 12, scale_factor=2, scale_window=1000)
model = MyTrainOneStepCell(loss_net, adam, manager, grad_clip=True, clipnorm=10.)
else:
model = MyTrainOneStepCell(loss_net, adam, grad_clip=True, clipnorm=10.)
self.actor_var = MSVariables(self.net)
return model
def predict(self, state):
state = Tensor(state, dtype=ms.float32)
return self.net(state).asnumpy()
class DqnCnnNet(Cell):
def __init__(self, **descript):
super(DqnCnnNet, self).__init__()
self.state_dim = descript.get("state_dim")
action_dim = descript.get("action_dim")
self.dueling = descript.get("dueling")
self.convlayer1 = Conv2d(self.state_dim[2], 32, kernel_size=8, stride=4, pad_mode='valid',
weight_init="xavier_uniform")
self.convlayer2 = Conv2d(32, 64, kernel_size=4, stride=2, pad_mode='valid', weight_init="xavier_uniform")
self.convlayer3 = Conv2d(64, 64, kernel_size=3, stride=1, pad_mode='valid', weight_init="xavier_uniform")
self.relu = ReLU()
self.flattenlayer = Flatten()
_dim = (
(((self.state_dim[0] - 4) // 4 - 2) // 2 - 2)
* (((self.state_dim[1] - 4) // 4 - 2) // 2 - 2)
* 64
)
self.denselayer1 = Dense(_dim, 256, activation='relu', weight_init="xavier_uniform")
self.denselayer2 = Dense(256, action_dim, weight_init="xavier_uniform")
self.denselayer3 = Dense(256, 1, weight_init="xavier_uniform")
def construct(self, x):
out = Cast()(x.transpose((0, 3, 1, 2)), ms.float32) / 255.
out = self.convlayer1(out)
out = self.relu(out)
out = self.convlayer2(out)
out = self.relu(out)
out = self.convlayer3(out)
out = self.relu(out)
out = self.flattenlayer(out)
out = self.denselayer1(out)
value = self.denselayer2(out)
if self.dueling:
adv = self.denselayer3(out)
mean = value.sub(value.mean(axis=1, keep_dims=True))
value = adv.add(mean)
return value
_grad_scale = MultitypeFuncGraph("grad_scale")
@_grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
return grad * ops.cast(ops.Reciprocal()(scale), ops.dtype(grad))
class MyTrainOneStepCell(ms.nn.TrainOneStepWithLossScaleCell):
def __init__(self, network, optimizer, scale_sense=1, grad_clip=False, clipnorm=1.):
self.clipnorm = clipnorm
if isinstance(scale_sense, (int, float)):
scale_sense = Tensor(scale_sense, dtype=ms.float32)
super(MyTrainOneStepCell, self).__init__(network, optimizer, scale_sense)
self.grad_clip = grad_clip
def construct(self,*inputs ):
weights = self.weights
loss = self.network(*inputs)
scaling_sens = self.scale_sense
status, scaling_sens = self.start_overflow_check(loss, scaling_sens)
scaling_sens_filled = ops.ones_like(loss) * ops.cast(scaling_sens, ops.dtype(loss))
grads = self.grad(self.network, weights)(*inputs, scaling_sens_filled)
grads = self.hyper_map(ops.partial(_grad_scale, scaling_sens), grads)
if self.grad_clip:
grads = ops.clip_by_global_norm(grads, self.clipnorm)
grads = self.grad_reducer(grads)
cond = self.get_overflow_status(status, grads)
overflow = self.process_loss_scale(cond)
if not overflow:
loss = ops.depend(loss, self.optimizer(grads))
return loss
13 changes: 12 additions & 1 deletion xt/model/ms_compat.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,18 @@ def import_ms_compact():


# pylint: disable=W0611
if ms.__version__ in ("2.0.0"):
from mindspore.nn import Adam
from mindspore.nn import Conv2d, Dense, Flatten, ReLU
from mindspore.nn import MSELoss
from mindspore.train import Model
from mindspore.nn import WithLossCell, TrainOneStepCell, SoftmaxCrossEntropyWithLogits, SequentialCell
from mindspore.nn import Cell, WithLossCell, DynamicLossScaleUpdateCell, get_activation, LossBase, FixedLossScaleUpdateCell
from mindspore import Model, Tensor
from mindspore.ops import Cast, MultitypeFuncGraph, ReduceSum, ReduceMax, ReduceMin, ReduceMean, Reciprocal
from mindspore.ops import Depend, clip_by_global_norm, Minimum, Maximum, Exp, Square, clip_by_value
from mindspore import History, value_and_grad

if ms.__version__ in ("1.9.0"):
from mindspore.nn import Adam
from mindspore.nn import Conv2d, Dense, Flatten, ReLU
Expand All @@ -50,7 +62,6 @@ def import_ms_compact():
from mindspore.ops import Depend, value_and_grad, clip_by_global_norm, Minimum, Maximum, Exp, Square, clip_by_value
from mindspore import History


def loss_to_val(loss):
"""Make keras instance into value."""
if isinstance(loss, History):
Expand Down
Loading