SpeechRecognitionModel(
# First convolutional layer
(cnn): Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
# 5 blocks of convolutional layers with residual connections
(res_cnn): Sequential(
(0): ResidualCNN(
(norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(dropout): Dropout(p=0.2, inplace=False)
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): ResidualCNN(
(norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(dropout): Dropout(p=0.2, inplace=False)
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): ResidualCNN(
(norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(dropout): Dropout(p=0.2, inplace=False)
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): ResidualCNN(
(norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(dropout): Dropout(p=0.2, inplace=False)
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(4): ResidualCNN(
(norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(dropout): Dropout(p=0.2, inplace=False)
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
# Single linear layer to tie CNN and RNN parts together
(fc): Linear(in_features=2048, out_features=512, bias=True)
# 5 blocks of recurrent layers
(rnn): Sequential(
(0): RNN(
(norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(gru): GRU(512, 512, batch_first=True, bidirectional=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(1): RNN(
(norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(gru): GRU(1024, 512, bidirectional=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(2): RNN(
(norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(gru): GRU(1024, 512, bidirectional=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(3): RNN(
(norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(gru): GRU(1024, 512, bidirectional=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(4): RNN(
(norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(relu): ReLU()
(gru): GRU(1024, 512, bidirectional=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
# Two fully connected layers to convert the output of RNN layers to a probability
# distribution for each vertical feature vector and each character
(dense): Sequential(
(0): Linear(in_features=1024, out_features=512, bias=True)
(1): ReLU()
(2): Dropout(p=0.2, inplace=False)
(3): Linear(in_features=512, out_features=29, bias=True)
)
)
-
Notifications
You must be signed in to change notification settings - Fork 11
Simple Guide How To Build Your Own End-To-End Automatic Speech Recognition System
License
hsouporto/audio-recognition
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Simple Guide How To Build Your Own End-To-End Automatic Speech Recognition System
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published