Skip to content

Commit

Permalink
poster23: wrap around fig
Browse files Browse the repository at this point in the history
  • Loading branch information
gderosa committed Nov 13, 2023
1 parent 037c4aa commit fec843f
Showing 1 changed file with 36 additions and 23 deletions.
59 changes: 36 additions & 23 deletions poster/poster.tex
Original file line number Diff line number Diff line change
Expand Up @@ -41,16 +41,16 @@
\usepackage[svgnames]{xcolor} % Specify colors by their 'svgnames', for a full list of all colors available see here: https://www.latextemplates.com/svgnames-colors

% \usepackage{newtxtext} % Use the times font for text, newer flavor
\usepackage{helvet}
% \usepackage{helvet}
% \usepackage{mathpazo}
\renewcommand{\familydefault}{\sfdefault} % sans serif font

\usepackage{graphicx} % Required for including images
\graphicspath{{img/}} % Location of the graphics files
\usepackage{booktabs} % Top and bottom rules for table
\usepackage[font=small,labelfont=bf]{caption} % Required for specifying captions to tables and figures
\usepackage{amsfonts, amsmath, amsthm, amssymb} % For math fonts, symbols and environments
\usepackage{wrapfig} % Allows wrapping text around tables and figures
\usepackage{amsfonts, amsmath, amsthm, amssymb} % For math fonts, symbols and environments

\usepackage{physics}
%\usepackage[T1]{fontenc}
Expand Down Expand Up @@ -105,8 +105,9 @@
\newcommand{\dbradket}[2]{\left\langle\smallback\left\langle #1 \middle| #2 \right\rangle\smallback\right\rangle}
\newcommand{\dketdbra}[2]{\left| #1 \left\rangle\smallback\left\rangle \smallback \right\langle\smallback\right\langle #2 \right|}

\definecolor{boxedcolor}{RGB}{32, 48, 32}

%\definecolor{boxedcolor}{RGB}{32, 48, 32}
\definecolor{maincolor}{RGB}{16, 48, 16}
%\definecolor{boxedcolor}{maincolor}


%\renewcommand{\abstractname}{\large Abstract} % abstract hacks
Expand Down Expand Up @@ -145,10 +146,9 @@

\color{Navy} % Navy color for the abstract

\section*{\large Abstract}
\section*{Abstract}
%\noindent % abstract hacks
This work relates to the problem of time in quantum physics \cite{TQM1, TQM2}.
As it's well known, time in quantum mechanics is treated as an external (classical) parameter.
Time in quantum mechanics is treated as an external (classical) parameter \cite{TQM1, TQM2}.
%
Here we present some first results related to
the Page-Wootters model of quantum time~\cite{Lloyd:Time, Maccone:Pauli},
Expand Down Expand Up @@ -199,7 +199,7 @@ \section*{Historical background: The Pauli Objection}
% THE MODEL
%----------------------------------------------------------------------------------------

\color{DarkSlateGray} % DarkSlateGray color for the rest of the content
\color{maincolor} % DarkSlateGray color for the rest of the content

\section*{Evolution without evolution: the Page and Wootters model}

Expand All @@ -225,12 +225,12 @@ \section*{Evolution without evolution: the Page and Wootters model}
As explained in \cite{Lloyd:Time, Maccone:Pauli}, the overall Hamiltonian,
encompassing both position and time as observables, is given by
\begin{equation}\label{eq:pwHamiltonian}
\boxed{\color{boxedcolor} \hat{\mathbb{J}} = \hbar\hat{\Omega}\ox\idop_S + \idop_T\ox\hat{H}_S}
\boxed{\hat{\mathbb{J}} = \hbar\hat{\Omega}\ox\idop_S + \idop_T\ox\hat{H}_S}
\;\text{,}
\end{equation}
while the \term{Wheeler-DeWitt equation} holds:
\begin{equation}\label{eq:Wheeler-DeWitt}
\boxed{\color{boxedcolor} \hat{\mathbb{J}}\dket{\Psi} = 0}
\boxed{\hat{\mathbb{J}}\dket{\Psi} = 0}
\;\text{,}
\end{equation}
describing a \emph{static} universe, where evolution is only
Expand Down Expand Up @@ -296,16 +296,28 @@ \section*{Example: One qubit and a $N=32$-level clock ``universe''}
\, \text{.}
\]


\begin{wrapfigure}[20]{r}{0.2\textwidth}
\begin{center}
\includegraphics[width=0.2\textwidth]{PWfit32top-largelabels.png}
\end{center}
\caption{
\color{Green}
Comparison of discrete P-W model prediction (points) with the ordinary QM Schr\"odinger solution (continuous line).
Complex values.
}
\end{wrapfigure}

The frequency operator in $\hilb{H}_T$, as the canonically conjugate operator
of $\hat{T}$ in a finite-dimensional Hilbert space, is derived via
\emph{discrete Fourier transformation} \cite{FiniteHilb} (with $F_N$ unitary):
\begin{equation}
\boxed{ \color{boxedcolor}
\boxed{
\hat{\Omega} = \frac{N}{2\pi} F^{}_{N} \hat{T} F^{\dagger}_{N}
}
\, \text{.}
\; \text{.}
\end{equation}

%
We therefore need to find the eigenvectors of $\hat{\mathbb{J}}$ as in \eqref{eq:pwHamiltonian}.
Such eigensolutions
will encode the whole (periodic) evolution of the qubit (in $\hilb{H}_S$), but do
Expand All @@ -322,20 +334,21 @@ \section*{Example: One qubit and a $N=32$-level clock ``universe''}
$\epsilon_{41} = 11$.

The first two components
are interpreted as the components of the qubit in $\hilb{H}_S$ at $t=0$.
are interpreted as the components of the qubit in $\hilb{H}_S$ at $t=0$.
In general, the components
$2k$\nobreakdash-th and $2k+1$\nobreakdash-th
are compared to the components of the qubit at $k$-th discrete temporal step ($t = k \frac{2\pi}{N}$).

\begin{center}\vspace{1cm}
\includegraphics[width=0.3\linewidth]{PWfit32.png}
\includegraphics[width=0.4\linewidth]{PWfit32top.png}
\captionof{figure}{
\color{Green}
Comparison of discrete P-W model prediction (points) with the ordinary QM Schr\"odinger solution (continuous line).
Complex values.
}
\end{center}\vspace{1cm}
% \begin{center}\vspace{1cm}
% \includegraphics[width=0.3\linewidth]{PWfit32-largelabels.png}
% \includegraphics[width=0.4\linewidth]{PWfit32top-largelabels.png}
% \captionof{figure}{
% \color{Green}
% Comparison of discrete P-W model prediction (points) with the ordinary QM Schr\"odinger solution (continuous line).
% Complex values.
% }
% \end{center}\vspace{1cm}


%----------------------------------------------------------------------------------------
% CONCLUSIONS
Expand Down

0 comments on commit fec843f

Please sign in to comment.