Skip to content

Commit

Permalink
poster23: emph eqs
Browse files Browse the repository at this point in the history
  • Loading branch information
gderosa committed Nov 13, 2023
1 parent a2e00aa commit cf0f5f9
Showing 1 changed file with 63 additions and 82 deletions.
145 changes: 63 additions & 82 deletions poster/poster.tex
Original file line number Diff line number Diff line change
Expand Up @@ -27,15 +27,22 @@
\addbibresource{bib/main.bib}
\addbibresource{bib/comp.bib}
\addbibresource{bib/misc.bib}
\AtEveryBibitem{
\clearfield{issn}
\clearfield{month}
\clearfield{doi}
}


\usepackage{multicol} % This is so we can have multiple columns of text side-by-side
\columnsep=100pt % This is the amount of white space between the columns in the poster
\columnseprule=3pt % This is the thickness of the black line between the columns in the poster

\usepackage[svgnames]{xcolor} % Specify colors by their 'svgnames', for a full list of all colors available see here: https://www.latextemplates.com/svgnames-colors

%\usepackage{newtxtext} % Use the times font for text, newer flavor
% \usepackage{newtxtext} % Use the times font for text, newer flavor
\usepackage{helvet}
% \usepackage{mathpazo}
\renewcommand{\familydefault}{\sfdefault} % sans serif font

\usepackage{graphicx} % Required for including images
Expand All @@ -46,12 +53,14 @@
\usepackage{wrapfig} % Allows wrapping text around tables and figures

\usepackage{physics}
\usepackage[T1]{fontenc}
%\usepackage[T1]{fontenc}
\usepackage{setspace}

\setlength{\fboxsep}{5\fboxsep}

\usepackage{bbm}

\usepackage[top=2.8cm,right=2.8cm,bottom=2.8cm,left=2.6cm]{geometry}
\usepackage[top=2.8cm,right=2.8cm,bottom=2.8cm,left=2.8cm]{geometry}

\usepackage{lipsum}

Expand Down Expand Up @@ -96,6 +105,8 @@
\newcommand{\dbradket}[2]{\left\langle\smallback\left\langle #1 \middle| #2 \right\rangle\smallback\right\rangle}
\newcommand{\dketdbra}[2]{\left| #1 \left\rangle\smallback\left\rangle \smallback \right\langle\smallback\right\langle #2 \right|}

\newcommand{\boxedcolor}{DarkSlateGrey}


%\renewcommand{\abstractname}{\large Abstract} % abstract hacks

Expand All @@ -110,18 +121,15 @@
% The second is 25% wide and houses a logo for your university/organization or a photo of you
% The widths of these boxes can be easily edited to accommodate your content as you see fit
\begin{minipage}[c]{0.70\linewidth}
\VeryHuge \color{NavyBlue} \textbf{It's $\ket{1}$ o'clock} \color{Black}\\[0.5cm] % Title
\VeryHuge\color{NavyBlue}\textbf{It's $\ket{1}$ o'clock} \color{Black}\\[0.5cm] % Title
\huge\textit{Relational Time and Applications}\\[1cm] % Subtitle
\huge University College Cork, School of Physics\\[0.66cm] % University/organization
\large%
Guido De Rosa (MSc.)
|
Andreas Ruschhaupt (Supervisor)%
\Large{Guido De Rosa (MSc.) -- Andreas Ruschhaupt (Supervisor)}

\end{minipage}%
%
\begin{minipage}[t]{0.30\linewidth}
\includegraphics[width=19cm]{ucc_logo.pdf}\\ %% vector, from original SVG
\includegraphics[width=18cm]{ucc_logo.pdf}\\ %% vector, from original SVG
\end{minipage}

\vspace{2cm} % A bit of extra whitespace between the header and poster content
Expand Down Expand Up @@ -149,31 +157,29 @@ \section*{\large Abstract}
time is an observable with an associated self-adjoint operator.
We also apply the Page-Wootters formalism
to absorptive detector models with
on-unitary evolution \cite{RuschhauptAbsorption}.
non-unitary evolution \cite{RuschhauptAbsorption}.

%\end{abstract}

\setlength{\parindent}{1.5em} % Default is 15pt.
\setlength{\parindent}{2em} % Default is 15pt.

%----------------------------------------------------------------------------------------
% INTRODUCTION
%----------------------------------------------------------------------------------------

\color{SaddleBrown} % SaddleBrown color for the introduction

\large
%\large

\section*{Historical background: The Pauli Objection}
The idea of time as an observable in quantum mechanics,
with an associated self-adjoint operator in a Hilbert space of quantum states,
was first excluded by W. Pauli,
and not given particular attention by the Author himself,
if only a footnote was dedicated to dismiss the whole subject. \cite{PauliFootnote}

was first excluded by W. Pauli \cite{PauliFootnote}.
%
Quoting \cite{Maccone:Pauli},
``Schr\"odinger's equation says that the Hamiltonian is the generator of time translations. This seems
to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian''.

%
Pauli's argument
is based on showing that
the existence of
Expand All @@ -185,38 +191,8 @@ \section*{Historical background: The Pauli Objection}
$
implies that the spectrum of \emph{any} Hamiltonian must be the whole real line
(contradicting the property of being bounded from below).
A detailed proof is expanded in the paper by E. Galapon \cite{Galapon2002}.

% Since T is self-adjoint, then for all
% $\beta\in\mathbb{R}$, $U_{\beta} = \exp(- i \beta T / \hbar)$
% is unitary. A formal
% expansion of the exponential yields the commutator

% \begin{multline}
% [U_{\beta}, H] =
% \left[
% \sum_{k=0}^{\infty} \frac{1}{k!} \left(- \frac{i\beta T}{\hbar} \right)^k, H
% \right] =
% \sum_{k=0}^{\infty} \frac{1}{k!} \left(- \frac{i\beta}{\hbar} \right)^k [T^k, H]
% =
% \sum_{k=0}^{\infty} \frac{1}{k!} \left(- \frac{i\beta}{\hbar} \right)^k kT^{k-1}[T, H] \\ =
% \beta\sum_{k=1}^{\infty} \frac{1}{(k-1)!} \left(- \frac{i\beta}{\hbar} \right)^{k-1} T^{k-1} =
% \beta\sum_{\kappa=0}^{\infty} \frac{1}{\kappa!} \left(- \frac{i\beta T}{\hbar} \right)^{\kappa} =
% \beta U_{\beta}
% \end{multline}
% where the term for $k=0$ in the first sum vanishes, hence we can start the sum from
% $k=1$ then set $\kappa=k-1$.

% Now, given an eigenvector $\varphi_{E}$ so that $H\varphi_{E}=E\varphi_{E}$, there has:

% $$
% HU_{\beta}\varphi_{E} = (U_{\beta}H - [U_{\beta}, H])\varphi_{E} =
% EU_{\beta}\varphi_{E} - \beta U_{\beta}\varphi_{E} = (E-\beta)U_{\beta}\varphi_{E}
% $$
% showing that $U_{\beta}\varphi_{E}$ is another eigenvector of $H$ with eigenvalue
% $E-\beta$. But $\beta$ is an arbitrary real number and $H$ a \emph{generic} Hamiltonian,
% hence the spectrum of a generic Hamiltonian $H$ should
% be the whole real line, which contradicts the semi-bounded nature of its spectrum.
A detailed proof is expanded in~\cite{Galapon2002}.


%----------------------------------------------------------------------------------------
% THE MODEL
Expand Down Expand Up @@ -248,11 +224,13 @@ \section*{Evolution without evolution: the Page and Wootters model}
As explained in \cite{Lloyd:Time, Maccone:Pauli}, the overall Hamiltonian,
encompassing both position and time as observables, is given by
\begin{equation}\label{eq:pwHamiltonian}
\hat{\mathbb{J}} = \hbar\hat{\Omega}\ox\idop_S + \idop_T\ox\hat{H}_S \,\text{,}
\color{\boxedcolor}\boxed{\hat{\mathbb{J}} = \hbar\hat{\Omega}\ox\idop_S + \idop_T\ox\hat{H}_S}
\,\text{,}
\end{equation}
while the \term{Wheeler-DeWitt equation} holds:
\begin{equation}\label{eq:Wheeler-DeWitt}
\hat{\mathbb{J}}\dket{\Psi} = 0 \,\text{,}
\color{\boxedcolor}\boxed{\hat{\mathbb{J}}\dket{\Psi} = 0}
\,\text{,}
\end{equation}
describing a \emph{static} universe, where evolution is only
in terms of relations between parts of a multipartite system
Expand All @@ -279,30 +257,30 @@ \section*{Evolution without evolution: the Page and Wootters model}

The Pauli objection no longer holds as time as a quantum observable operates in a separate Hilbert space.

\subsection*{Non-zero eigenvalues}
% \subsection*{Non-zero eigenvalues}

Up to an irrelevant global
phase, the physical vectors $\dket{\Psi}$ can be identified also by
imposing the constraint
\[
\hat{\mathbb{J}}\dket{\Psi} = \epsilon \dket{\Psi}
\]
with real $\epsilon$. The corresponding evolution in $\hilb{H}_S$ will then need
a rigid energy shift of its spectrum by replacing $\ket{\psi(t)}_S$
with $e^{-i \epsilon t / \hbar} \ket{\psi(t)}_S$
% Up to an irrelevant global
% phase, the physical vectors $\dket{\Psi}$ can be identified also by
% imposing the constraint
% \[
% \hat{\mathbb{J}}\dket{\Psi} = \epsilon \dket{\Psi}
% \]
% with real $\epsilon$. The corresponding evolution in $\hilb{H}_S$ will then need
% a rigid energy shift of its spectrum by replacing $\ket{\psi(t)}_S$
% with $e^{-i \epsilon t / \hbar} \ket{\psi(t)}_S$

\section*{Example: One qubit ``universe'' and a $N=32$-level clock}
\section*{Example: One qubit and a $N=32$-level clock ``universe''}

The clock is built as having a time operator which is diagonal in the
chosen computational basis:
\[
\hat{T} \repr \frac{2\pi}{N}
\begin{pmatrix}
0 & & & \\
&1 & & \\
& &\ddots & \\
& & &N-1
\end{pmatrix} \,\text{.}
\hat{T} \repr \frac{2\pi}{N} \,\;\! \mathrm{diag}\qty(0, \dots, N-1)
% \begin{pmatrix}
% 0 & & & \\
% &1 & & \\
% & &\ddots & \\
% & & &N-1
% \end{pmatrix} \,\text{.}
\]
With this choice, the clock spans the characteristic period of $\Delta T = 2\pi$.

Expand All @@ -320,12 +298,15 @@ \section*{Example: One qubit ``universe'' and a $N=32$-level clock}
The frequency operator in $\hilb{H}_T$, as the canonically conjugate operator
of $\hat{T}$ in a finite-dimensional Hilbert space, is derived via
\emph{discrete Fourier transformation} \cite{FiniteHilb} (with $F_N$ unitary):
\[
\hat{\Omega} = \frac{N}{2\pi} F^{}_{N} \hat{T} F^{\dagger}_{N} \, \text{.}
\]
\begin{equation}
\color{\boxedcolor}\boxed{
\hat{\Omega} = \frac{N}{2\pi} F^{}_{N} \hat{T} F^{\dagger}_{N}
}
\, \text{.}
\end{equation}

We therefore need to find the eigenvectors of $\hat{\mathbb{J}}$ as in \eqref{eq:pwHamiltonian}
(a $2N \times 2N$ matrix obtained as a Kronecker product). Such eigensolutions
We therefore need to find the eigenvectors of $\hat{\mathbb{J}}$ as in \eqref{eq:pwHamiltonian}.
Such eigensolutions
will encode the whole (periodic) evolution of the qubit (in $\hilb{H}_S$), but do
not ``evolve'' themselves (as there's no external ``time'' outside $\hilb{H}_T \ox \hilb{H}_S$).

Expand All @@ -336,22 +317,22 @@ \section*{Example: One qubit ``universe'' and a $N=32$-level clock}
i.e. solutions that do not correspond to eigenstates of
the ``ordinary'' Hamiltonian $\hat{H}_S$ of the qubit.

We pick $\dket{\Phi_{40}}$ and $\dket{\Phi_{41}}$ corresponding to eigenvalues
$\epsilon_{40} = 12$ and $\epsilon_{41} = 11$.
We pick $\dket{\Phi_{41}}$ corresponding to eigenvalue
$\epsilon_{41} = 11$.

The first two components of each eigenvector in the computational basis
are interpreted as the components of the qubit in $\hilb{H}_S$ at $t=0$. The components
The first two components
are interpreted as the components of the qubit in $\hilb{H}_S$ at $t=0$.
In general, the components
$2k$\nobreakdash-th and $2k+1$\nobreakdash-th
as the components of the qubit at $k$-th discrete temporal step ($t = k \frac{2\pi}{N}$).
Comparison with ordinary quantum mechanics solution (Schr\"odinger equation) as shown in picture.
are compared to the components of the qubit at $k$-th discrete temporal step ($t = k \frac{2\pi}{N}$).

\begin{center}\vspace{1cm}
\includegraphics[width=0.3\linewidth]{PWfit32.png}
\includegraphics[width=0.4\linewidth]{PWfit32top.png}
\captionof{figure}{
\color{Green}
Comparison of discrete P-W model prediction (points) with the ordinary QM Schr\"odinger solution (continuous line)
for eigensolutions of $\hat{\mathbb{J}}$ labeled as $\epsilon_{40}$ and $\epsilon_{41}$. Complex values.
Comparison of discrete P-W model prediction (points) with the ordinary QM Schr\"odinger solution (continuous line).
Complex values.
}
\end{center}\vspace{1cm}

Expand Down

0 comments on commit cf0f5f9

Please sign in to comment.