Skip to content

R package: Convert country names and country codes. Assigns region descriptors.

License

Notifications You must be signed in to change notification settings

galalH/countrycode

 
 

Repository files navigation

countrycode

DOI AppVeyor build status R build status CRAN downloads

countrycode standardizes country names, converts them into ~40 different coding schemes, and assigns region descriptors. Scroll down for more details or visit the countrycode CRAN page

If you use countrycode in your research, we would be very grateful if you could cite our paper:

Arel-Bundock, Vincent, Nils Enevoldsen, and CJ Yetman, (2018). countrycode: An R package to convert country names and country codes. Journal of Open Source Software, 3(28), 848, https://doi.org/10.21105/joss.00848

Table of Contents

Why countrycode?

The Problem

Different data sources use different coding schemes to represent countries (e.g. CoW or ISO). This poses two main problems: (1) some of these coding schemes are less than intuitive, and (2) merging these data requires converting from one coding scheme to another, or from long country names to a coding scheme.

The Solution

The countrycode function can convert to and from 40+ different country coding schemes, and to 600+ variants of country names in different languages and formats. It uses regular expressions to convert long country names (e.g. Sri Lanka) into any of those coding schemes or country names. It can create new variables with various regional groupings.

Installation

From the R console, type:

install.packages("countrycode")

To install the latest development version, you can use the remotes package:

library(remotes)
install_github('vincentarelbundock/countrycode')

Supported codes

To get an up-to-date list of supported country codes, install the package and type ?codelist. These include:

  • 600+ variants of country names in different languages and formats.
  • AR5
  • Continent and region identifiers.
  • Correlates of War (numeric and character)
  • European Central Bank
  • EUROCONTROL - The European Organisation for the Safety of Air Navigation
  • Eurostat
  • Federal Information Processing Standard (FIPS)
  • Food and Agriculture Organization of the United Nations
  • Global Administrative Unit Layers (GAUL)
  • Geopolitical Entities, Names and Codes (GENC)
  • Gleditsch & Ward (numeric and character)
  • International Civil Aviation Organization
  • International Monetary Fund
  • International Olympic Committee
  • ISO (2/3-character and numeric)
  • Polity IV
  • United Nations
  • United Nations Procurement Division
  • Varieties of Democracy
  • World Bank
  • World Values Survey
  • Unicode symbols (flags)

countrycode

Convert a single name or code

Load library:

library(countrycode)

Convert single country codes:

# ISO to Correlates of War
countrycode('DZA', origin = 'iso3c', destination = 'cown') 
[1]   615

# English to ISO
countrycode('Albania', origin = 'country.name', destination = 'iso3c') 
[1] "ALB"

# German or Italian to Arabic
countrycode(c('Algerien', 'Albanien'), origin = 'country.name.de', destination = 'un.name.ar') 
[1] "الجزائر" "ألبانيا"

countrycode(c('Moldavia', 'Stati Uniti'), origin = 'country.name.it', destination = 'un.name.ar') 
[1] "ﺞﻤﻫﻭﺮﻳﺓ ﻡﻮﻟﺩﻮﻓﺍ"            "ﺎﻟﻭﻼﻳﺎﺗ ﺎﻠﻤﺘﺣﺩﺓ ﺍﻸﻣﺮﻴﻜﻳﺓ"

Convert a vector of country codes

> cowcodes <- c("ALG", "ALB", "UKG", "CAN", "USA")
> countrycode(cowcodes, origin = "cowc", destination = "iso3c")
[1] "DZA" "ALB" "GBR" "CAN" "USA"

Generate vectors and 2 data frames without a common id (i.e. can't merge the 2 df):

> isocodes <- c(12,8,826,124,840)
> var1     <- sample(1:500,5)
> var2     <- sample(1:500,5)
> df1      <- data.frame(cowcodes,var1)
> df2      <- data.frame(isocodes,var2)

Inspect the data:

> df1
cowcodes var1
1      ALG   71
2      ALB  427
3      UKG  180
4      CAN   21
5      USA  383
> df2
isocodes var2
1       12  238
2        8  329
3      826  463
4      124  437
5      840   26

Create a common variable with the iso3c code in each data frame, merge the data, and create a country identifier:

> df1$iso3c   <- countrycode(df1$cowcodes, origin = "cowc", destination = "iso3c")
> df2$iso3c   <- countrycode(df2$isocodes, origin = "iso3n", destination = "iso3c")
> df3         <- merge(df1,df2,id="iso3c")
> df3$country <- countrycode(df3$iso3c, origin = "iso3c", destination = "country.name")
> df3
iso3c cowcodes var1 isocodes var2        country
1   ALB      ALB  113        8  245        ALBANIA
2   CAN      CAN  373      124  197         CANADA
3   DZA      ALG  254       12  295        ALGERIA
4   GBR      UKG  351      826   57 UNITED KINGDOM
5   USA      USA  241      840   85  UNITED STATES

Flags

countrycode can convert country names and codes to unicode flags. For example, we can use the gt package to draw a table with countries and their corresponding flags:

library(gt)
library(countrycode)

Countries <- c('Canada', 'Germany', 'Thailand', 'Algeria', 'Eritrea')
Flags <- countrycode(Countries, 'country.name', 'unicode.symbol')
dat <- data.frame(Countries, Flags)
gt(dat)

Which produces this file:

Note that embedding unicode characters in R graphics is possible, but it can be tricky. If your output looks like \U0001f1e6\U0001f1f6, then you could try feeding it to this function: utf8::utf8_print(). That should cover a lot of cases without dipping into the complexity of graphics devices. As a rule of thumb, if your output looks like □□□□ (boxes), things tend to get more complicated. In that case, you'll have to think about different output devices, file viewers, and/or file formats (e.g., 'SVG' or 'HTML').

Since inserting unicode symbols into R graphics is not a countrycode-specific issue, we won't be able to offer any more support than this. Good luck!

Country names in 600+ different languages and formats

The Unicode organisation hosts the CLDR project, which publishes many variants of country names. For each language/culture locale, there is a full set of names, plus possible 'alt-short' or 'alt-variant' variations of specific country names.

> countrycode('United States of America', origin = 'country.name', destination = 'cldr.name.en')
> [1] "United States"
> countrycode('United States of America', origin = 'country.name', destination = 'cldr.short.en')
> [1] "US"

To see a full list of country name variants available, inspect this data.frame:

> head(countrycode::cldr_examples)
             Code                    Example
1    cldr.name.af   Franse Suidelike Gebiede
2   cldr.name.agq                         TF
3    cldr.name.ak                         TF
4    cldr.name.am           የፈረንሳይ ደቡባዊ ግዛቶች
5    cldr.name.ar الأقاليم الجنوبية الفرنسية
6 cldr.name.ar_ly الأقاليم الجنوبية الفرنسية

custom_dict: American states

Since version 0.19, countrycode accepts user-supplied dictionaries via the custom_dict argument. These dictionaries will override the built-in country code dictionary. For example, the countrycode Github repository includes a dictionary of regexes and abbreviations to work with US state names.

Load the library and download the custom dictionary data.frame:

library(countrycode)
url = "https://raw.githubusercontent.com/vincentarelbundock/countrycode/master/data/custom_dictionaries/us_states.csv"
state_dict = read.csv(url, stringsAsFactors=FALSE)

Convert:

countrycode('State of Alabama', 
            origin = 'state', 
            destination = 'abbreviation', 
            custom_dict = state_dict,
            origin_regex = TRUE)
[1] "AL"
countrycode(c('MI', 'OH', 'Bad'), 'abbreviation', 'state', custom_dict=state_dict)
[1] "Michigan" "Ohio"     NA        

Note that if you use a custom dictionary with country codes, you could easily merge it into the countrycode::codelist or countrycode::codelist_panel to gain access to all other codes.

custom_dict: the ISOcodes package

countrycode already supports ISO4217 (currencies) and ISO3166 (country codes). The ISOcodes package supplies other codes, including ISO15924 (language writing systems), ISO639 (languages), and ISO8859 (computer character encodings). Users can convert those codes using countrycode's custom_dict argument.

For example, the ISOcodes::ISO_639_2 dataframe includes 4 columns: Alpha_3_B, Alpha_3_T, Alpha_2, and Name. We can convert language names like this:

> countrycode('abk', 'Alpha_3_B', 'Name', custom_dict = ISOcodes::ISO_639_2)
[1] "Abkhazian"

The ISOcodes::ISO_8859 dataset is a 3-dimensional array where the second dimension represents the character encoding. We take the subset of ISO_8859_1 codes and convert the dict to a dataframe for use in countrycode's custom_dict argument:

library(ISOcodes)
dict