Skip to content

Code of "To The Point: Correspondence-driven monocular 3D category reconstruction (TTP)" Neurips 2021

License

Notifications You must be signed in to change notification settings

fkokkinos/to_the_point_3d_reconstruction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

To The Point: Correspondence-driven monocular 3D category reconstruction (TTP)

Filippos Kokkinos and Iasonas Kokkinos

Paper Project Page

Requirements

  • Python 3.6+
  • PyTorch 1.7.1
  • PyTorch3D 0.4.0
  • cuda 11.0

Installation Instructions

Clone code from repo:

git clone https://github.com/fkokkinos/to_the_point_3d_reconstruction
cd to_the_point_3d_reconstruction/

Setup Conda Env:

  • Create Conda environment
conda create -n ttp
conda activate ttp
conda env update --file conda_env.yml
  • Install other packages and dependencies

    Refer here for pytorch installation

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -c pytorch

Training and Evaluation Instructions

Setup annotations and data directories

Download dataset pre-trained models

Download pre-trained models from here and unzip in misc folder

cd misc/
7z t cachedir.7z

CUB dataset can be downloaded from here. Unzip the file in misc/, else set the --cub_dir argument appropriately.

Training and Testing on CUB dataset

Training:

Training on CUB is done with

python main.py --name EXP_NAME --kp_loss_wt 0. --mask_loss_wt 2. --rigid_wt 3. --bdt_reg_wt 3. --print_freq 12 --display_freq 100 --tex_loss_wt 1. --tex_dt_loss_wt 1. --equiv_loss_wt 1. --weighted_camera --split train --vis_loss_wt 1. --batch_size 8 --flip_train --learnable_kp=False --mesh_dir meshes/bird_v2.obj --kp_dict meshes/bird_kp_dictionary_v3.pkl --tex_subdivision 1 --triangle_reg_wt 1. --tri_basis_wt 1. --basis_k 16 --arap_reg_wt 3. --betas_loss_wt 0. --sil_loss_wt 0. --normal_loss_wt 0. --def_loss_wt 5. --basis_cycle_loss_wt 0. --arap_basis_loss_wt 0.1 --save_epoch_freq 20 --def_steps 4

Exact hyper-parameters used for training of pre-trained models can be found in misc/cachedir/snapshots folder.

Evaluation:

CUB experiment trained with keypoints:

python3 -m benchmark.evaluate --name bird_kp  --num_train_epoch 130 --split test --weighted_camera  --basis_k 16 --tex_subdivision 1 --mesh_dir meshes/bird_v2.obj  --kp_dict meshes/bird_kp_dictionary_v3.pkl --def_steps 4  --split test

CUB experiment trained without keypoints:

python3 -m benchmark.evaluate --name bird_nokp  --num_train_epoch 130 --split test --weighted_camera  --basis_k 16 --tex_subdivision 1 --mesh_dir meshes/bird_v2.obj  --kp_dict meshes/bird_kp_dictionary_v3.pkl --def_steps 4  --split test

BibTex

If you find the code useful for your research, please consider citing:-

@inproceedings{
               kokkinos2021to,
               title={To The Point: Correspondence-driven monocular 3D category reconstruction},
               author={Filippos Kokkinos and Iasonas Kokkinos},
               booktitle={Advances in Neural Information Processing Systems},
               editor={A. Beygelzimer and Y. Dauphin and P. Liang and J. Wortman Vaughan},
               year={2021},
               url={https://openreview.net/forum?id=AWMU04iXQ08}
               }

Acknowledgements

This code repository uses code from ACFM, CMR, CSM, and BPnPNet repos.

Contact

For questions feel free to contact me at filippos.kokkinos[at]ucl.ac.uk .

About

Code of "To The Point: Correspondence-driven monocular 3D category reconstruction (TTP)" Neurips 2021

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published