Skip to content

Code for paper Kanavati, F. et al. (2020). Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment. arXiv preprint arXiv:2006.06432.

License

Notifications You must be signed in to change notification settings

fk128/sarcopenia-ai

Repository files navigation

Sarcopenia AI

Code for papers:

Kanavati, F., Islam, S., Aboagye, E. O., & Rockall, A. (2018). Automatic L3 slice detection in 3D CT images using fully-convolutional networks. arXiv preprint arXiv:1811.09244.

Kanavati, F., Islam, S., Arain, Z., Aboagye, E. O., & Rockall, A. (2020). Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment. arXiv preprint arXiv:2006.06432.

Models

Trained models for slice detection and slice segmentation are provided in models/

Dev

conda create -y --name sarcopenia-ai python=3.6.2

Install

pip install -e .

Docker

Build docker image

docker build -t sarcopeniaai -f ./Dockerfile .

or make build

Slice detection trainer

Download the training data from here to your data folder.

docker run --rm -it  -v <your_data_folder>:/data -v $(pwd)/configs:/configs sarcopeniaai python -m sarcopenia_ai.apps.slice_detection.trainer --config /configs/slice_detection.cfg

Training output preview on validation images

Segmentation trainer

Labelled segmentation data is not provided. Once you get your own data, you can train a segmentation model with

docker run --rm -it -v <your_data_folder>:/data -v $(pwd)/configs:/configs sarcopeniaai python -m sarcopenia_ai.apps.segmentation.trainer --config /configs/segmentation.cfg

Run as API server

docker run --rm -it -p 5000:5000 sarcopeniaai python -m sarcopenia_ai.apps.server.run_local_server

or make server

Then head to https://localhost:5000 for web UI

You can also get results from command line. Example:

curl -X POST -F image=@data/volume.nii.gz https://localhost:5000/predict

Expected result

{
   "prediction":{
      "id":"64667bf3482d4ee5a0e8af6c67b2fa0d",
      "muscle_area":"520.15",
      "muscle_attenuation":"56.00 HU",
      "slice_prob":"69.74%",
      "slice_z":90,
      "str":"Slice detected at position 90 of 198 with 69.74% confidence "
   },
   "success":true
}

L3 annotated dataset

The dataset was collected from multiple sources:

  1. 3 sets were obtained from the Cancer Imaging Archive (TCIA):

  2. a liver tumour dataset was obtained from the LiTS segmentation challenge.

The dataset is available for download in MIPs format from here.

The subset of transitional vertabrae cases can be downloaded from here.

@article{kanavati2018automatic,
  title={Automatic L3 slice detection in 3D CT images using fully-convolutional networks},
  author={Kanavati, Fahdi and Islam, Shah and Aboagye, Eric O and Rockall, Andrea},
  journal={arXiv preprint arXiv:1811.09244},
  year={2018}
}


@article{kanavati2020fullyautomated,
    title={Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment},
    author={Fahdi Kanavati and Shah Islam and Zohaib Arain and Eric O. Aboagye and Andrea Rockall},
    year={2020},
    eprint={2006.06432},
    archivePrefix={arXiv},
    primaryClass={eess.IV}
}

About

Code for paper Kanavati, F. et al. (2020). Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment. arXiv preprint arXiv:2006.06432.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages