Skip to content

fengkiej/lindsvg

 
 

Repository files navigation

lindsvg

lindsvg (pronounced /ˈlɪnds ˈviː ˈdʒiː/), Lindenmayer System [Scalable] Vector Graphics

Simple dependency-free module used to generate SVG images of deterministic L-systems.

Generated SVG tree

Installation

In an npm project

Installing the module is as simple as:

npm install lindsvg

Now you may get it in your scripts as usual: require("lindsvg"), or import * as lindsvg from "lindsvg" if you use such bundlers as webpack or rollup.

In a browser

lindsvg is available in UMD format which allows you using it either with AMD/CJS compatible module loaders or in global namespace (window.lindsvg). You may get the module sources from such CDNs as jsDelivr or unpkg:

<script src="https://cdn.jsdelivr.net/npm/lindsvg/dist/lindsvg.min.js"></script>

If you rather prefer using ES modules in a browser, just choose the “esm” bundle:

<script type="module">
    import * as lindsvg from "https://cdn.jsdelivr.net/npm/lindsvg/dist/lindsvg.esm.min.js";
    // ...
</script>

API & examples

The module exports two pairs of methods.

  1. The methods returning ready-to-render L-system’s SVG code as a string:
    • getSVGCode(lsParams[, svgParams]);
    • getMultiPathSVGCode(lsParams[, svgParams]);
  2. The methods returning raw data that you may use to construct the SVG code yourself:
    • getSVGData(lsParams);
    • getMultiPathSVGData(lsParams).

The “multi-path” methods (getMultiPathSVGCode and getMultiPathSVGData) differ from the “normal” methods (getSVGCode and getSVGData) in that they provide the ability for advanced stylisation of branched L-systems. SVG images created using these “multi-path” methods contain several <path> elements, each one for a specific branching level, so they can be stylised differently (color, line width, etc.)

All methods expect L-system parameters object as their first argument. These parameters are explained through the comments in the snippet below. Additionally, the methods getSVGCode and getMultiPathSVGCode may be passed an optional parameter to alter the output SVG settings (refer the comments in the snippet below).

Using “single-path” methods

let {getSVGCode, getSVGData} = require("lindsvg");

// L-system parameters
let lsParams = {
    axiom: "A---A",      // The initial codeword (axiom)
    rules: {             // L-system production rules
        F: "F",          // Move forward a step with drawing a line
        B: "B",          // Move forward a step without drawing a line
        A: "B-F+Z+F-BA", // Auxiliary rules...
        Z: "F-FF-F--[--Z]F-FF-F--F-FF-F--"
    },
    alpha: 0,            // Initial angle in radians
    theta: Math.PI / 3,  // Angle increment in radians
    step: 15,            // The length of a “turtle” step
    iterations: 7        // Total number of iterations
};

// Output SVG parameters (all of them are optional)
let svgParams = {
    width: 600,       // Desired SVG element width
    height: 600,      // Desired SVG element height
    padding: 5,       // Additional space to extend the viewBox
    pathAttributes: { // Name to value map for the <path> element attributes
        stroke: "green",
        "stroke-width": "2"
    }
};

// Get ready-to-render L-system’s SVG code as a string...
let svgCode = getSVGCode(lsParams, svgParams);

// ...or get raw data required for manual SVG assemblage
let {pathData, minX, minY, width, height} = getSVGData(lsParams);

An object returned by getSVGData contains path data needed to draw the L-system, as well as the drawing boundaries that are essential for the viewBox attribute.

Using “multi-path” methods

Using “multi-path” methods (getMultiPathSVGCode and getMultiPathSVGData) allows you to specify different path attributes for every <path> element separately, which may make branched L-systems (like plants) look “more naturally”.

For example, to generate the tree demonstrated above (all but foliage) the following options were used:

let {getMultiPathSVGCode, getMultiPathSVGData} = require("lindsvg");

// L-system parameters
let lsParams = {
    axiom: "F-FFF-F+F+X",
    rules: {
        F: "F",
        X: "FFF-[-F+F[Y]-[X]]+[+F+F[X]-[X]]",
        Y: "FF-[-F+F]+[+F+FY]"
    },
    alpha: 90 * Math.PI / 180,
    theta: 14 * Math.PI / 180,
    iterations: 6,
    step: 12
};

// Output SVG parameters
let svgParams = {
    width: 565,
    height: 445,
    padding: 10,
    pathAttributes: {
        stroke: "#514d3a",
        "stroke-width": ["16", "11", "9", "7", "6", "5", "3", "2", "1"],
        "stroke-linecap": ["square", "round" /* the rest items are equal to the last one */]
    }
};

// Get ready-to-render L-system’s SVG code as a string...
let svgCode = getMultiPathSVGCode(lsParams, svgParams);

// ...or get raw data required for manual SVG assemblage
let {multiPathData, minX, minY, width, height} = getMultiPathSVGData(lsParams);

If an attribute array contains fewer elements than the maximum branching depth (e.g. see stroke-linecap in the example above), the missing items are implicitly made equal to the last one. So you don’t need to repeat the same value in the end of the list.

The property multiPathData in the object returned by getMultiPathSVGData is a list of path data for every <path> element. The list is sorted in the order of increasing branch level (the deeper the branch the higher the index in the array).

Error handling

In case of invalid input L-system parameters, the methods throw a custom exception. You may use it to get a detailed explanation of which parameter(s) failed to pass validation, and format the message as you wish.

let {getSVGCode} = require("lindsvg");
let yaml = require("js-yaml");

try {
    console.log(getSVGCode(lsParams, svgParams));
} catch (error) {
    // Log the original message
    console.error(error);
    if (error.name === "LSError") {
        // Get a JSON representation of the error list and format it as YAML
        let errorJSON = error.toJSON();
        console.log(yaml.dump(errorJSON, {indent: 4}));
    }
}

Compatibility note

lindsvg utilizes the ECMAScript 2018 syntax. If you want to use the module in environments that do not support ES 2018, please transpile the sources with babel or whatever for your needs.

Demos

Please, visit the project’s demo web app (installable as a PWA and works offline too). You will find a few built-in L-system collections there, and will also be able to experiment with lindsvg while building your own L-systems.

Also, check out this collection on CodePen to get a few advanced examples of using lindsvg.

About

Lindenmayer System [Scalable] Vector Graphics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 74.1%
  • HTML 25.9%