Skip to content

[ArXiv 2024] WildAvatar: Web-scale In-the-wild Video Dataset for 3D Avatar Creation

License

Notifications You must be signed in to change notification settings

ezhangle/WildAvatar_Toolbox

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WildAvatar: Web-scale In-the-wild Video Dataset for 3D Avatar Creation

1Huazhong University of Science and Technology  2S-Lab, Nanyang Technological University
3Great Bay University  4Shanghai AI Laboratory

ArXiv Project Page Visitors

TL;DR: WildAvatar is a large-scale dataset from YouTube with 10,000+ human subjects, designed to address the limitations of existing laboratory datasets for avatar creation.

🔨 Environments

conda create -n wildavatar python=3.9
conda activate wildavatar
pip install -r requirements.txt
pip install pyopengl==3.1.4

📦 Prepare Dataset

  1. Download WildAvatar.zip
  2. Put the WildAvatar.zip under ./data/WildAvatar/.
  3. Unzip WildAvatar.zip
  4. Install yt-dlp
  5. Download and Extract images from YouTube, by running
python prepare_data.py --ytdl ${PATH_TO_YT-DLP}$

📊 Visualization

  1. Put the SMPL_NEUTRAL.pkl under ./assets/.
  2. Run the following script to visualize the smpl overlay of the human subject of ${youtube_ID}
python vis_smpl.py --subject "${youtube_ID}"
  1. The SMPL mask and overlay visualization can be found in data/WildAvatar/${youtube_ID}/smpl and data/WildAvatar/${youtube_ID}/smpl_masks

For example, if you run

python vis_smpl.py --subject "__-ChmS-8m8"

The SMPL mask and overlay visualization can be found in data/WildAvatar/__-ChmS-8m8/smpl and data/WildAvatar/__-ChmS-8m8/smpl_masks

🎯 Using WildAvatar

For training and testing on WildAvatar, we currently provide the adapted code for HumanNeRF and GauHuman.

📝 Citation

If you find our work useful for your research, please cite our paper.

    @article{huang2024wildavatar,
    title={WildAvatar: Web-scale In-the-wild Video Dataset for 3D Avatar Creation},
    author={Huang, Zihao and Hu, ShouKang and Wang, Guangcong and Liu, Tianqi and Zang, Yuhang and Cao, Zhiguo and Li, Wei and Liu, Ziwei},
    journal={arXiv preprint arXiv:2407.02165},
    year={2024}
    }

😃 Acknowledgement

This project is built on source codes shared by GauHuman, HumanNeRF, and CLIFF. Many thanks for their excellent contributions!

📧 Contact

If you have any questions, please feel free to contact Zihao Huang (zihaohuang at hust.edu.cn).

About

[ArXiv 2024] WildAvatar: Web-scale In-the-wild Video Dataset for 3D Avatar Creation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 76.7%
  • Cuda 18.2%
  • C++ 4.4%
  • Other 0.7%