OmiEmbed: A Unified Multi-task Deep Learning Framework for Multi-omics Data
Xiaoyu Zhang ([email protected])
Data Science Institute, Imperial College London
OmiEmbed is a unified framework for deep learning-based omics data analysis, which supports:
- Multi-omics integration
- Dimensionality reduction
- Omics embedding learning
- Tumour type classification
- Phenotypic feature reconstruction
- Survival prediction
- Multi-task learning for aforementioned tasks
Paper Link: arXiv
- CPU or NVIDIA GPU + CUDA CuDNN
- Python 3.6+
- Python Package Manager
- Python Packages
- PyTorch 1.2+
- TensorBoard 1.10+
- Tables 3.6+
- scikit-survival 0.6+
- prefetch-generator 1.0+
- Git 2.7+
- Clone the repo
git clone https://github.com/zhangxiaoyu11/OmiEmbed.git
cd OmiEmbed
- Install the dependencies
- For conda users
conda env create -f environment.yml conda activate omiembed
- For pip users
pip install -r requirements.txt
- Train and test using the built-in sample dataset with the default settings
python train_test.py
- Check the output files
cd checkpoints/test/
- Visualise the metrics and losses
tensorboard --logdir=tb_log --bind_all
If you use this code in your research, please cite our paper.
@misc{zhang2021omiembed,
title={OmiEmbed: a unified multi-task deep learning framework for multi-omics data},
author={Xiaoyu Zhang and Yuting Xing and Kai Sun and Yike Guo},
year={2021},
eprint={2102.02669},
archivePrefix={arXiv},
primaryClass={q-bio.GN}
}
This source code is licensed under the MIT license.