Skip to content

dual-grp/FedPCA_Abnormal_Detection

Repository files navigation

Fed PCA: Federated PCA on Grassmann Manifold for Anomaly Detection in IoT Networks [INFOCOM2023]

This repository is for the Experiment Section of the paper: "Federated PCA on Grassmann Manifold for Anomaly Detection in IoT Networks"

Authors: Tung-Anh Nguyen, Jiayu He, Long Tan Le, Nguyen H.Tran

Paper link: https://arxiv.org/pdf/2212.12121.pdf

Software requirements:

  • numpy, scipy, pytorch, Pillow, matplotlib.

  • To download the dependencies: pip3 install -r requirements.txt

  • The code can be run on any pc.

Instruction to run the code

!python3 main.py --algorithm FedPG --learning_rate 0.0001 --num_global_iters 100 --dim 30 --subusers 0.1 --local_epochs 30
!python3 main.py --algorithm FedPE --learning_rate 0.0001 --num_global_iters 100 --dim 30 --subusers 0.1 --local_epochs 30

Estimate training time for FedPG and FedPE


!python3 main.py --algorithm FedPG --learning_rate 0.0001 --num_global_iters 1000 --dim 30 --subusers 0.1 --local_epochs 30
!python3 main.py --algorithm FedPE --learning_rate 0.0001 --num_global_iters 1000 --dim 30 --subusers 0.1 --local_epochs 30
!python3 main.py --algorithm FedPE --learning_rate 0.0001 --num_global_iters 1000 --dim 30 --subusers 0.1 --local_epochs 40
!python3 main.py --algorithm FedPE --learning_rate 0.0001 --num_global_iters 1000 --dim 30 --subusers 0.1 --local_epochs 60
!python3 main.py --algorithm FedPE --learning_rate 0.0001 --num_global_iters 1000 --dim 30 --subusers 0.1 --local_epochs 80

Dataset:

NSL-KDD

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published