Skip to content

dong845/rapid_variants

Repository files navigation

rapid_variants

Enter each folder and run based on its own following instruction.

rapid-origin:

original code of rapid

rapid-structure:

change model struture, run 'python main.py --env MiniGrid-KeyCorridorS3R2-v0 --sl_until 1200000 --model_type=mlp', model_type can be "mlp", "cnn1d", "cnn2d"

rapid-sample:

change sample method, run 'python main.py --env MiniGrid-KeyCorridorS3R2-v0 --sl_until 1200000 --choice_type=original' choice_type can be "original", "softmax" and "epsilon-greedy"

rapid-weight:

give larger weight to beneficial states (key, box and door), run 'python main.py --env MiniGrid-KeyCorridorS3R2-v0 --sl_until 1200000 --local_score_type=original' local_score_type can be "original" and "new"

rapid-anneal-ratio:

anneal weight of local score and global store with different start point based on setting ratio, run 'python main.py --env MiniGrid-KeyCorridorS3R2-v0 --sl_until 1200000 --ratio=0.5' ratio can be any float number less than 1, we pick 0.25, 0.5 and 0.75

rapid-anneal:

anneal weight of local score and global store when extrinsic reward is not 0, run just 'python main.py --env MiniGrid-KeyCorridorS3R2-v0 --sl_until 1200000'

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages