Skip to content

Commit

Permalink
Added content
Browse files Browse the repository at this point in the history
  • Loading branch information
diegotrap committed Jan 12, 2014
1 parent c633f19 commit fec647f
Show file tree
Hide file tree
Showing 2 changed files with 110 additions and 82 deletions.
192 changes: 110 additions & 82 deletions acdcconv.mdown
Original file line number Diff line number Diff line change
Expand Up @@ -390,8 +390,7 @@ $$ % Rectifier model, by Diego Trapero
(2,2) to[C](2,0)
(2,2) to[short](3,2)
(3,0) to[R](3,2)
(2,0) to[short](3,0)
(0,0) to[short](2,0)
(0,0) to[short](3,0)
(0,0) node[ground](){}
;
\end{circuitikz}
Expand All @@ -409,8 +408,7 @@ $$ % Rectifier model, by Diego Trapero
(2,2) to[C](2,0)
(2,2) to[short](3,2)
(3,0) to[R](3,2)
(2,0) to[short](3,0)
(0,0) to[short](2,0)
(0,0) to[short](3,0)
(0,0) node[ground](){}
;
\end{circuitikz}
Expand All @@ -430,8 +428,7 @@ $$ % Rectifier model, by Diego Trapero
(2,2) to[C](2,0)
(2,2) to[short](3,2)
(3,0) to[R](3,2)
(2,0) to[short](3,0)
(0,0) to[short](2,0)
(0,0) to[short](3,0)
(0,0) node[ground](){}
;
\end{circuitikz}
Expand Down Expand Up @@ -494,7 +491,9 @@ The ripple of the wave using the triangular approximation is
$$\Delta v_o = \frac{V \Delta T}{C}$$
$$\Delta v_o = \frac{V_i T }{2RC}$$

**
**Mean value**

******

**Advantages of a smoothing condenser**

Expand Down Expand Up @@ -526,99 +525,128 @@ $$ % AC to DC Full Wave Rectifier with RLC load, by Diego Trapero
\end{circuitikz}
$$

**$v_R$ mean value**

The mean value of $v_o$ can be calculated by using superposition with the circuit:

$$ % Rectifier model, by Diego Trapero
\begin{circuitikz}[scale = 1]
\draw
(0,0) to[voltage source, l=$v_o$](0,2)
(0,2) to[diode](2,2)
(2,2) to[L](4,2)
(4,2) to[C](4,0)
(4,2) to[short](5,2)
(5,0) to[R](5,2)
(0,0) to[short](5,0)
(0,0) node[ground](){}
;
\end{circuitikz}
$$

For the mean values, the resulting DC circuit is:

$$ % Rectifier model, by Diego Trapero
\begin{circuitikz}[scale = 1]
\draw
(0,0) to[voltage source, l=$\bar{v_o}$](0,2)
(0,2) to[diode](2,2)
(2,2) to[short](4,2)
(4,2) to[open](4,0)
(4,2) to[short](5,2)
(5,0) to[R](5,2)
(0,0) to[short](5,0)
(0,0) node[ground](){}
;
\end{circuitikz}
$$

The resulting $\bar{v_R}$ is

$$\bar{v_R} = \bar{v_o} = \frac{2V_{ip}}{\pi}$$


**RLC circuit transfer function**

$$ \mathbf{H} = \frac{\mathbf{V_o}}{\mathbf{V_i}} = \frac{1}{1 + \frac{L}{R}j\omega - LC \omega^2} $$

$$ H = | \frac{\mathbf{V_o}}{\mathbf{V_i}} | = \frac{1}{ \sqrt{(1- LC \omega^2 )^2 + (\frac{L}{R} \omega )^2 } } $$


**Advantages of LC filtering**
**$v_R$ ripple**

* No current peaks in the diodes.
* Less condenser ripple.
* Less capacity and current capacitor required.
Ripple is due to the first harmonic:

**Disadvantages of LC filtering**
$$\Delta v_R = H_{filter} \cdot |V_{o1}|$$

* Size and weight of the inductor
$$ H = \frac{1}{ \sqrt{(1- LC \omega^2 )^2 + (\frac{L}{R} \omega )^2 } } $$

### RL load
$$|V_{o1}| = \frac{4}{\pi} \frac{1}{3} V_{ip}$$

### Loads table

\tabulinesep=1mm
\begin{longtabu} to\linewidth{|X[1,m,c]|X[2,m,c]|X[2,m,c]|X[2,m,c]|}
**Inductor current, $i_L$**

\hline
What & R load & RC load & RLC load \\
\hline
Inductor current can be approximated with its mean value and ripple.

Circuit Diagram
&
$$ % AC to DC Full Wave Rectifier with R load, by Diego Trapero
\begin{circuitikz}[scale = 0.6, transform shape]
\draw
(0,0) node[fullWaveRectifier](FWR){}
(-19mm, -5mm) to[sinusoidal voltage source](-19mm, 5mm)
(9mm, 5mm) to[short](19mm,5mm)
(19mm, 5mm) to[open](19mm,-5mm)
(29mm, 5mm) to[R](29mm,-5mm)
(-19mm, 5mm) -- (FWR.1)
(-19mm, -5mm) -- (FWR.2)
(19mm,5mm) -- (29mm, 5mm)
(FWR.3) -- (29mm,-5mm)
;
\end{circuitikz}
$$
&
$$ % AC to DC Full Wave Rectifier with RC load, by Diego Trapero
\begin{circuitikz}[scale = 0.6, transform shape]
\draw
(0,0) node[fullWaveRectifier](FWR){}
(-19mm, -5mm) to[sinusoidal voltage source](-19mm, 5mm)
(9mm, 5mm) to[short](19mm,5mm)
(19mm, 5mm) to[C](19mm,-5mm)
(29mm, 5mm) to[R](29mm,-5mm)
(-19mm, 5mm) -- (FWR.1)
(-19mm, -5mm) -- (FWR.2)
(19mm,5mm) -- (29mm, 5mm)
(FWR.3) -- (29mm,-5mm)
;
\end{circuitikz}
$$
&
$$ % AC to DC Full Wave Rectifier with RLC load, by Diego Trapero
\begin{circuitikz}[scale = 0.6, transform shape]
\draw
(0,0) node[fullWaveRectifier](FWR){}
(-19mm, -5mm) to[sinusoidal voltage source](-19mm, 5mm)
(9mm, 5mm) to[L](19mm,5mm)
(19mm, 5mm) to[C](19mm,-5mm)
(29mm, 5mm) to[R](29mm,-5mm)
(-19mm, 5mm) -- (FWR.1)
(-19mm, -5mm) -- (FWR.2)
(19mm,5mm) -- (29mm, 5mm)
(FWR.3) -- (29mm,-5mm)
;
\end{circuitikz}
$$
\\
\hline
* **Mean value**. Using superposition

$v_g$ vs $i_g$
&
\vspace{20mm}
&
RC
&
RLC
\\
$$ % Rectifier model, by Diego Trapero
\begin{circuitikz}[scale = 1]
\draw
(0,0) to[voltage source, l=$\bar{v_o}$](0,2)
(0,2) to[diode](2,2)
(2,2) to[short](4,2)
(4,2) to[open](4,0)
(4,2) to[short](5,2)
(5,0) to[R](5,2)
(0,0) to[short](5,0)
(0,0) node[ground](){}
;
\end{circuitikz}
$$


\end{longtabu}
$$i_L = \frac{\bar{v_o}}{R}$$

* **Ripple**. As in the $v_R$ ripple, maximum variation of the current is due to the 1st harmonic of $v_o$. Thus, ripple can be calculated:

$$ % Rectifier model, by Diego Trapero
\begin{circuitikz}[scale = 1]
\draw
(0,0) to[voltage source, l=$v_o$](0,2)
(0,2) to[diode](2,2)
(2,2) to[L](4,2)
(4,2) to[C](4,0)
(4,2) to[short](5,2)
(5,0) to[R](5,2)
(0,0) to[short](5,0)
(0,0) node[ground](){}
;
\end{circuitikz}
$$

$$I_{1p} = \frac{V_{o1}}{Z_1}$$

If $\Delta v_R$ is already calculated, it can be used to compute the ripple:

$$\Delta i_L = \frac{\Delta v_R}{Z_{RC}}$$



The rectifier is in CCM if the inductor is always conducting some current:

\vspace{80mm}
$$\frac{1}{2}\Delta i_l < \bar{i_L} $$

**Advantages of LC filtering**

* No current peaks in the diodes.
* Less condenser ripple.
* Less capacity and current capacitor required.

**Disadvantages of LC filtering**

* Size and weight of the inductor

### RL load


**Flyback Diode**
Expand Down
Binary file modified acdcconv.pdf
Binary file not shown.

0 comments on commit fec647f

Please sign in to comment.