English | 中文
SpikingJelly is an open-source deep learning framework for Spiking Neural Network (SNN) based on PyTorch.
The documentation of SpikingJelly is written in both English and Chinese: https://spikingjelly.readthedocs.io
Note that SpikingJelly is based on PyTorch. Please make sure that you have installed PyTorch before you install SpikingJelly.
Install from PyPI:
pip install spikingjelly
Developers can download and install the latest version from source codes:
From GitHub:
git clone https://github.com/fangwei123456/spikingjelly.git
cd spikingjelly
python setup.py install
From OpenI:
git clone https://git.openi.org.cn/OpenI/spikingjelly.git
cd spikingjelly
python setup.py install
SpikingJelly is user-friendly. Building SNN with SpikingJelly is as simple as building ANN in PyTorch:
class Net(nn.Module):
def __init__(self, tau=100.0, v_threshold=1.0, v_reset=0.0):
super().__init__()
# Network structure, a simple two-layer fully connected network, each layer is followed by LIF neurons
self.fc = nn.Sequential(
nn.Flatten(),
nn.Linear(28 * 28, 14 * 14, bias=False),
neuron.LIFNode(tau=tau, v_threshold=v_threshold, v_reset=v_reset),
nn.Linear(14 * 14, 10, bias=False),
neuron.LIFNode(tau=tau, v_threshold=v_threshold, v_reset=v_reset)
)
def forward(self, x):
return self.fc(x)
This simple network with a Poisson encoder can achieve 92% accuracy on MNIST test dataset. Read the tutorial of clock driven for more details. You can also run this code in Python terminal for training on classifying MNIST:
>>> import spikingjelly.clock_driven.examples.lif_fc_mnist as lif_fc_mnist
>>> lif_fc_mnist.main()
Read spikingjelly.clock_driven.examples to explore more advanced networks!
- Nvidia GPU
- CPU
As simple as using PyTorch.
>>> net = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10, bias=False), neuron.LIFNode(tau=tau))
>>> net = net.to(device) # Can be CPU or CUDA devices
Multimedia Learning Group, Institute of Digital Media (NELVT), Peking University and Peng Cheng Laboratory are the main developers of SpikingJelly.
The list of developers can be found here.
Any contributions to SpikingJelly is welcome!