forked from CrawfordGroup/pycc
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add test for isotropic and kick-pulse fields, fix magnetic dipole test
- Loading branch information
Showing
2 changed files
with
80 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
""" | ||
Test electric field generation | ||
""" | ||
|
||
# Import package, test suite, and other packages as needed | ||
import psi4 | ||
import pycc | ||
import pytest | ||
import numpy as np | ||
from ..data.molecules import * | ||
from pycc.rt.lasers import gaussian_laser | ||
|
||
def test_dipole_h2_2_field(): | ||
"""H2 dimer""" | ||
psi4.set_memory('2 GiB') | ||
psi4.core.set_output_file('output.dat', False) | ||
psi4.set_options({'basis': '6-31G', | ||
'scf_type': 'pk', | ||
'mp2_type': 'conv', | ||
'freeze_core': 'false', | ||
'e_convergence': 1e-13, | ||
'd_convergence': 1e-13, | ||
'r_convergence': 1e-13, | ||
'diis': 1}) | ||
mol = psi4.geometry(moldict["(H2)_2"]) | ||
rhf_e, rhf_wfn = psi4.energy('SCF', return_wfn=True) | ||
|
||
e_conv = 1e-13 | ||
r_conv = 1e-13 | ||
|
||
cc = pycc.ccenergy(rhf_wfn) | ||
ecc = cc.solve_ccsd(e_conv, r_conv) | ||
|
||
hbar = pycc.cchbar(cc) | ||
|
||
cclambda = pycc.cclambda(cc, hbar) | ||
lecc = cclambda.solve_lambda(e_conv, r_conv) | ||
|
||
ccdensity = pycc.ccdensity(cc, cclambda) | ||
|
||
# narrow Gaussian pulse | ||
F_str = 0.01 | ||
sigma = 0.01 | ||
center = 0.05 | ||
V = gaussian_laser(F_str, 0, sigma, center=center) | ||
rtcc = pycc.rtcc(cc, cclambda, ccdensity, V, magnetic = True) | ||
|
||
mints = psi4.core.MintsHelper(cc.ref.basisset()) | ||
dipole_ints = mints.ao_dipole() | ||
m_ints = mints.ao_angular_momentum() | ||
C = np.asarray(cc.ref.Ca_subset("AO", "ACTIVE")) | ||
ref_mu = [] | ||
ref_m = [] | ||
for axis in range(3): | ||
ref_mu.append(C.T @ np.asarray(dipole_ints[axis]) @ C) | ||
ref_m.append(C.T @ (np.asarray(m_ints[axis])*-0.5) @ C) | ||
assert np.allclose(ref_mu[axis],rtcc.mu[axis]) | ||
assert np.allclose(ref_m[axis]*1.0j,rtcc.m[axis]) | ||
ref_mu_tot = sum(ref_mu)/np.sqrt(3.0) | ||
|
||
assert np.allclose(ref_mu_tot,rtcc.mu_tot) | ||
|
||
rtcc = pycc.rtcc(cc, cclambda, ccdensity, V, magnetic = True, kick="Y") | ||
|
||
mints = psi4.core.MintsHelper(cc.ref.basisset()) | ||
dipole_ints = mints.ao_dipole() | ||
m_ints = mints.ao_angular_momentum() | ||
C = np.asarray(cc.ref.Ca_subset("AO", "ACTIVE")) | ||
ref_mu = [] | ||
ref_m = [] | ||
for axis in range(3): | ||
ref_mu.append(C.T @ np.asarray(dipole_ints[axis]) @ C) | ||
ref_m.append(C.T @ (np.asarray(m_ints[axis])*-0.5) @ C) | ||
assert np.allclose(ref_mu[axis],rtcc.mu[axis]) | ||
assert np.allclose(ref_m[axis]*1.0j,rtcc.m[axis]) | ||
|
||
assert np.allclose(ref_mu[1],rtcc.mu_tot) |