Skip to content

code-797/EG-SAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EG-SAM: An Edge-Guided SAM for Accurate Complex Object Segmentation

Pipeline

pipeline

Environment

Python 3.8

CUDA 11.7

PyTorch 1.13.1

TorchVision 0.14.1

Datasets

We follow the data set structure of HQSeg-44K as follows:

data
|____DIS5K
|____cascade_psp
| |____DUTS-TE
| |____DUTS-TR
| |____ecssd
| |____fss_all
| |____MSRA_10K
|____thin_object_detection
| |____COIFT
| |____ThinObject5K

You can get the datasets from here

Train

python -m torch.distributed.launch --nproc_per_node=<num_gpus> train.py --checkpoint <your checkpoint path> --model-type <model_type> --output <your output path>

EG-SAM is an improvement on the basis of HQ-SAM, you can follow the environment Settings here

Evaluation

python -m torch.distributed.launch --nproc_per_node=<num_gpus> train.py --checkpoint <your checkpoint path> --model-type <model_type> --output <your output path> --eval --restore-model <your training_checkpoint path>

You can get the weight file here

Visualization

Vis1

Visual comparison with nine state-of-the-art COD methods. EG-SAM demonstrates superior accuracy in delineating the boundaries of camouflaged objects.

cam sort

Results on DIS,COIFT and ThinObject

result1

Results on CODs

result2

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages