Integrate all single cell rank-based gene set enrichment analysis and easy to visualize the results.
For more details, please view irGSEA And you can view: Chinese tutorial_1 Chinese tutorial_2
Cite: irGSEA: the integration of single-cell rank-based gene set enrichment analysis, Briefings in Bioinformatics, Volume 25, Issue 4, July 2024, bbae243, https://doi.org/10.1093/bib/bbae243
Graph Abstrast# install packages from CRAN
cran.packages <- c("aplot", "BiocManager", "circlize", "cowplot","data.table",
"devtools", "doParallel", "doRNG", "dplyr", "ggfun", "gghalves",
"ggplot2", "ggplotify", "ggridges", "ggsci", "irlba",
"magrittr", "Matrix", "msigdbr", "pagoda2", "plyr", "pointr",
"purrr", "RcppML", "readr", "reshape2", "reticulate",
"rlang", "RMTstat", "RobustRankAggreg", "roxygen2",
"Seurat", "SeuratObject", "stringr", "tibble", "tidyr",
"tidyselect", "tidytree", "VAM")
for (i in cran.packages) {
if (!requireNamespace(i, quietly = TRUE)) {
install.packages(i, ask = F, update = F)
}
}
# install packages from Bioconductor
bioconductor.packages <- c("AUCell", "BiocParallel", "ComplexHeatmap",
"decoupleR", "fgsea", "ggtree", "GSEABase",
"GSVA", "Nebulosa", "scde", "singscore",
"SummarizedExperiment", "UCell",
"viper","sparseMatrixStats")
for (i in bioconductor.packages) {
if (!requireNamespace(i, quietly = TRUE)) {
BiocManager::install(i, ask = F, update = F)
}
}
# install packages from Github
if (!requireNamespace("irGSEA", quietly = TRUE)) {
devtools::install_github("chuiqin/irGSEA", force =T)
}
Optional installation if you want to perform VISION, gficf, Sargent, ssGSEApy, GSVApy, etc
#### install packages from Github
# VISION
if (!requireNamespace("VISION", quietly = TRUE)) {
devtools::install_github("YosefLab/VISION", force =T)
}
# mdt need ranger
if (!requireNamespace("ranger", quietly = TRUE)) {
devtools::install_github("imbs-hl/ranger", force =T)
}
# gficf need RcppML (version > 0.3.7) package
if (!utils::packageVersion("RcppML") > "0.3.7") {
message("The version of RcppML should greater than 0.3.7 and install RcppML package from Github")
devtools::install_github("zdebruine/RcppML", force =T)
}
# please first `library(RcppML)` if you want to perform gficf
if (!requireNamespace("gficf", quietly = TRUE)) {
devtools::install_github("gambalab/gficf", force =T)
}
# GSVApy and ssGSEApy need SeuratDisk package
if (!requireNamespace("SeuratDisk", quietly = TRUE)) {
devtools::install_github("mojaveazure/seurat-disk", force =T)
}
# sargent
if (!requireNamespace("sargent", quietly = TRUE)) {
devtools::install_github("Sanofi-Public/PMCB-Sargent", force =T)
}
# pagoda2 need scde package
if (!requireNamespace("scde", quietly = TRUE)) {
devtools::install_github("hms-dbmi/scde", force =T)
}
# if error1 (functio 'sexp_as_cholmod_sparse' not provided by package 'Matrix')
# or error2 (functio 'as_cholmod_sparse' not provided by package 'Matrix') occurs
# when you perform pagoda2, please check the version of irlba and Matrix
# It's ok when I test as follow:
# R 4.2.2 irlba(v 2.3.5.1) Matrix(1.5-3)
# R 4.3.1 irlba(v 2.3.5.1) Matrix(1.6-1.1)
# R 4.3.2 irlba(v 2.3.5.1) Matrix(1.6-3)
#### create conda env
# If error (Unable to find conda binary. Is Anaconda installed) occurs,
# please perform `reticulate::install_miniconda()`
if (! "irGSEA" %in% reticulate::conda_list()$name) {
reticulate::conda_create("irGSEA")
}
# if python package exist
python.package <- reticulate::py_list_packages(envname = "irGSEA")$package
require.package <- c("anndata", "scanpy", "argparse", "gseapy", "decoupler")
for (i in seq_along(require.package)) {
if (i %in% python.package) {
reticulate::conda_install(envname = "irGSEA", packages = i, pip = T)
}
}
Some users can accelerate by mirror
options(BioC_mirror="https://mirrors.tuna.tsinghua.edu.cn/bioconductor/")
options("repos" = c(CRAN="https://mirrors.cloud.tencent.com/CRAN/"))
# install packages from CRAN
cran.packages <- c("aplot", "BiocManager", "circlize", "cowplot", "data.table",
"devtools", "doParallel", "doRNG", "dplyr", "ggfun", "gghalves",
"ggplot2", "ggplotify", "ggridges", "ggsci", "irlba",
"magrittr", "Matrix", "msigdbr", "pagoda2", "plyr", "pointr",
"purrr", "RcppML", "readr", "reshape2", "reticulate",
"rlang", "RMTstat", "RobustRankAggreg", "roxygen2",
"Seurat", "SeuratObject", "stringr", "tibble", "tidyr",
"tidyselect", "tidytree", "VAM")
for (i in cran.packages) {
if (!requireNamespace(i, quietly = TRUE)) {
install.packages(i, ask = F, update = F)
}
}
# install packages from Bioconductor
bioconductor.packages <- c("AUCell", "BiocParallel", "ComplexHeatmap",
"decoupleR", "fgsea", "ggtree", "GSEABase",
"GSVA", "Nebulosa", "scde", "singscore",
"SummarizedExperiment", "UCell", "viper")
for (i in bioconductor.packages) {
if (!requireNamespace(i, quietly = TRUE)) {
BiocManager::install(i, ask = F, update = F)
}
}
# install packages from git
if (!requireNamespace("irGSEA", quietly = TRUE)) {
devtools::install_git("https://gitee.com/fan_chuiqin/irGSEA.git", force =T)
}
# VISION
if (!requireNamespace("VISION", quietly = TRUE)) {
devtools::install_git("https://gitee.com/fan_chuiqin/VISION.git", force =T)
}
# mdt need ranger
if (!requireNamespace("ranger", quietly = TRUE)) {
devtools::install_git("https://gitee.com/fan_chuiqin/ranger.git", force =T)
}
# gficf need RcppML (version > 0.3.7) package
if (!utils::packageVersion("RcppML") > "0.3.7") {
message("The version of RcppML should greater than 0.3.7 and install RcppML package from Git")
devtools::install_git("https://gitee.com/fan_chuiqin/RcppML.git", force =T)
}
# please first `library(RcppML)` if you want to perform gficf
if (!requireNamespace("gficf", quietly = TRUE)) {
devtools::install_git("https://gitee.com/fan_chuiqin/gficf.git", force =T)
}
# GSVApy and ssGSEApy need SeuratDisk package
if (!requireNamespace("SeuratDisk", quietly = TRUE)) {
devtools::install_git("https://gitee.com/fan_chuiqin/seurat-disk.git",
force =T)}
# sargent
if (!requireNamespace("sargent", quietly = TRUE)) {
devtools::install_git("https://gitee.com/fan_chuiqin/PMCB-Sargent.git",
force =T)}
# pagoda2 need scde package
if (!requireNamespace("scde", quietly = TRUE)) {
devtools::install_git("https://gitee.com/fan_chuiqin/scde.git", force =T)
}
#### create conda env
# If error (Unable to find conda binary. Is Anaconda installed) occurs,
# please perform `reticulate::install_miniconda()`
if (! "irGSEA" %in% reticulate::conda_list()$name) {
reticulate::conda_create("irGSEA")
}
# if python package exist
python.package <- reticulate::py_list_packages(envname = "irGSEA")$package
require.package <- c("anndata", "scanpy", "argparse", "gseapy", "decoupler")
for (i in require.package) {
if (! i %in% python.package) {
reticulate::conda_install(envname = "irGSEA", packages = i, pip = T,
pip_options = "-i https://pypi.tuna.tsinghua.edu.cn/simple")
}
}
The time and peak memory consumption associated with 50 Hallmark gene sets across 19 scoring methods for datasets of varying sizes.To address memory peak issues for datasets exceeding 50,000 cells, we implemented a strategy of partitioning them into processing units of 5,000 cells each for scoring. While this strategy mitigates memory peak issues, it extends the processing time.
The time and peak memory consumption associated with 50 Hallmark gene sets across irGSEA (AUCell, UCell, singscore, ssgsea, JASMINE and viper) for datasets of varying sizes while the parameter chunk works.
Start from the 10X output file and organize it into the format required by the irGSEA package
# load library
library(dplyr)
library(Seurat)
# download the pbmc3k.final dataset
# the dataset is the output of the Cell Ranger pipeline from 10X
# decompress the file to the specified directory
download.file("https://cf.10xgenomics.com/samples/cell/pbmc3k.final3k/pbmc3k.final3k_filtered_gene_bc_matrices.tar.gz",
destfile = "./pbmc3k.final3k_filtered_gene_bc_matrices.tar.gz")
untar("./pbmc3k.final3k_filtered_gene_bc_matrices.tar.gz", exdir = "./")
# Load the pbmc3k.final dataset
# Initialize the Seurat object with the raw (non-normalized data)
# filter genes expressed by less than 10 cells
pbmc3k.final <- Read10X(data.dir = "./filtered_gene_bc_matrices/hg19/")
options(Seurat.object.assay.version = "v3")
pbmc3k.final <- CreateSeuratObject(counts = pbmc3k.final,
min.cells = 3, min.features = 200)
pbmc3k.final
# filter cells that have unique feature counts over 2500 or less than 200
# filter cells that have >5% mitochondrial counts
# filter cells that have >10% hemoglobin related counts
# Specific filtration criteria need to be adjusted according to cell type
pbmc3k.final[["percent.mt"]] <- PercentageFeatureSet(pbmc3k.final, pattern = "^MT-")
# pbmc3k.final[["percent.ribo"]] <- PercentageFeatureSet(pbmc3k.final, pattern = "^RP[L|S]")
HB.genes_total <- c("HBA1","HBA2","HBB","HBD","HBE1","HBG1","HBG2","HBM","HBQ1","HBZ")
HB_m <- match(HB.genes_total,rownames(pbmc3k.final))
HB.genes <- rownames(pbmc3k.final@assays$RNA)[HB_m]
HB.genes <- HB.genes[!is.na(HB.genes)]
pbmc3k.final[["percent.HB"]] <- PercentageFeatureSet(pbmc3k.final, features=HB.genes)
pbmc3k.final <- subset(pbmc3k.final, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5 & percent.HB < 10)
#### dimensional reduction, cluster and annotate
pbmc3k.final <- NormalizeData(pbmc3k.final)
pbmc3k.final <- FindVariableFeatures(pbmc3k.final)
pbmc3k.final <- ScaleData(pbmc3k.final)
pbmc3k.final <- RunPCA(pbmc3k.final, features = VariableFeatures(object = pbmc3k.final))
pbmc3k.final <- FindNeighbors(pbmc3k.final, dims = 1:10)
pbmc3k.final <- FindClusters(pbmc3k.final, resolution = 0.5)
pbmc3k.final <- RunUMAP(pbmc3k.final, dims = 1:10)
DimPlot(pbmc3k.final, reduction = "umap")
new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono",
"NK", "DC", "Platelet")
names(new.cluster.ids) <- levels(pbmc3k.final)
pbmc3k.final <- RenameIdents(pbmc3k.final, new.cluster.ids)
DimPlot(pbmc3k.final, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
# filter doublets(optional)
# devtools::install_github('chris-mcginnis-ucsf/DoubletFinder')
library(DoubletFinder)
sweep.res.list <- paramSweep(pbmc3k.final, PCs = 1:10, sct = FALSE)
sweep.stats <- summarizeSweep(sweep.res.list, GT = FALSE)
bcmvn <- find.pK(sweep.stats)
mpK <- as.numeric(as.vector(bcmvn$pK[which.max(bcmvn$BCmetric)]))
homotypic.prop <- modelHomotypic(pbmc3k.final$RNA_snn_res.0.5)
# estimation of 10X doublet rate:
# https://assets.ctfassets.net/an68im79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607f9193162994de/CG000204_ChromiumNextGEMSingleCell3_v3.1_Rev_D.pdf
expected_doublet_rate <- cut(ncol(pbmc3k.final),
breaks = c(0, 500, 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10000, 20000),
labels=c(0.004, 0.008, 0.016, 0.023, 0.031, 0.039,
0.046, 0.054, 0.061, 0.069, 0.076, 0.08))
expected_doublet_rate <- as.numeric(as.character(expected_doublet_rate))
nExp_poi <- round(expected_doublet_rate * nrow(pbmc3k.final@meta.data))
nExp_poi.adj <- round(nExp_poi*(1-homotypic.prop))
pbmc3k.final <- doubletFinder(pbmc3k.final, PCs = 1:10, pN = 0.25, pK = mpK, nExp = nExp_poi, reuse.pANN = FALSE, sct = FALSE)
pbmc3k.final <- subset(pbmc3k.final, subset = DF.classifications_0.25_0.01_61 != "Doublet")
Directly load pre-organized data and load PBMC dataset by R package SeuratData
# devtools::install_github('satijalab/seurat-data')
library(SeuratData)
# view all available datasets
View(AvailableData())
# download 3k PBMCs from 10X Genomics
InstallData("pbmc3k")
# the details of pbmc3k.final
?pbmc3k.final
library(Seurat)
library(SeuratData)
# loading dataset
data("pbmc3k.final")
pbmc3k.final <- UpdateSeuratObject(pbmc3k.final)
# plot
DimPlot(pbmc3k.final, reduction = "umap",
group.by = "seurat_annotations",label = T) + NoLegend()
# set cluster to idents
Idents(pbmc3k.final) <- pbmc3k.final$seurat_annotations
library(irGSEA)
calculate enrichment scores, return a Seurat object including these score matrix
AUcell or ssGSEA will run for a long time if there are lots of genes or cells. Thus, It’s recommended to keep high quality genes or cells.
Error (Valid ‘mctype’: ‘snow’ or ‘doMC’) occurs when ncore > 1 : please ensure the version of AUCell >= 1.14 or set ncore = 1.
It can be ignore when warnning occurs as follow: 1. closing unused connection 3 (localhost) 2. Using ‘dgCMatrix’ objects as input is still in an experimental stage. 3. xxx genes with constant expression values throuhgout the samples. 4. Some gene sets have size one. Consider setting ‘min.sz’ > 1.
pbmc3k.final <- irGSEA.score(object = pbmc3k.final, assay = "RNA",
slot = "data", seeds = 123, ncores = 4,
min.cells = 3, min.feature = 0,
custom = F, geneset = NULL, msigdb = T,
species = "Homo sapiens", category = "H",
subcategory = NULL, geneid = "symbol",
method = c("AUCell", "UCell", "singscore",
"ssgsea", "JASMINE", "viper"),
aucell.MaxRank = NULL, ucell.MaxRank = NULL,
kcdf = 'Gaussian')
#> Validating object structure
#> Updating object slots
#> Ensuring keys are in the proper structure
#> Updating matrix keys for DimReduc 'pca'
#> Updating matrix keys for DimReduc 'umap'
#> Ensuring keys are in the proper structure
#> Ensuring feature names don't have underscores or pipes
#> Updating slots in RNA
#> Updating slots in RNA_nn
#> Setting default assay of RNA_nn to RNA
#> Updating slots in RNA_snn
#> Setting default assay of RNA_snn to RNA
#> Updating slots in pca
#> Updating slots in umap
#> Setting umap DimReduc to global
#> Setting assay used for NormalizeData.RNA to RNA
#> Setting assay used for FindVariableFeatures.RNA to RNA
#> Setting assay used for ScaleData.RNA to RNA
#> Setting assay used for RunPCA.RNA to RNA
#> Setting assay used for JackStraw.RNA.pca to RNA
#> No assay information could be found for ScoreJackStraw
#> Setting assay used for FindNeighbors.RNA.pca to RNA
#> No assay information could be found for FindClusters
#> Setting assay used for RunUMAP.RNA.pca to RNA
#> Validating object structure for Assay 'RNA'
#> Validating object structure for Graph 'RNA_nn'
#> Validating object structure for Graph 'RNA_snn'
#> Validating object structure for DimReduc 'pca'
#> Validating object structure for DimReduc 'umap'
#> Object representation is consistent with the most current Seurat version
#> Calculate AUCell scores
#> Finish calculate AUCell scores
#> Calculate UCell scores
#> Finish calculate UCell scores
#> Calculate singscore scores
#> Finish calculate singscore scores
#> Calculate ssgsea scores
#> [1] "Calculating ranks..."
#> [1] "Calculating absolute values from ranks..."
#> Finish calculate ssgsea scores
#> Calculate JASMINE scores
#> Finish calculate jasmine scores
#> Calculate viper scores
#> Finish calculate viper scores
Seurat::Assays(pbmc3k.final)
#> [1] "RNA" "AUCell" "UCell" "singscore" "ssgsea" "JASMINE"
#> [7] "viper"
Wlicox test is perform to all enrichment score matrixes and gene sets with adjusted p value < 0.05 are used to integrated through RRA. Among them, Gene sets with p value < 0.05 are statistically significant and common differential in all gene sets enrichment analysis methods. All results are saved in a list.
result.dge <- irGSEA.integrate(object = pbmc3k.final,
group.by = "seurat_annotations",
metadata = NULL, col.name = NULL,
method = c("AUCell","UCell","singscore",
"ssgsea", "JASMINE", "viper"))
#> Calculate differential gene set : AUCell
#> For a (much!) faster implementation of the Wilcoxon Rank Sum Test,
#> (default method for FindMarkers) please install the presto package
#> --------------------------------------------
#> install.packages('devtools')
#> devtools::install_github('immunogenomics/presto')
#> --------------------------------------------
#> After installation of presto, Seurat will automatically use the more
#> efficient implementation (no further action necessary).
#> This message will be shown once per session
#> Finish!
#> Calculate differential gene set : UCell
#> Finish!
#> Calculate differential gene set : singscore
#> Finish!
#> Calculate differential gene set : ssgsea
#> Finish!
#> Calculate differential gene set : JASMINE
#> Finish!
#> Calculate differential gene set : viper
#> Finish!
class(result.dge)
#> [1] "list"
Show co-upregulated or co-downregulated gene sets per cluster in RRA
irGSEA.heatmap.plot <- irGSEA.heatmap(object = result.dge,
method = "RRA",
top = 50,
show.geneset = NULL)
irGSEA.heatmap.plot
Show co-upregulated or co-downregulated gene sets per cluster in RRA.
If error (argument “caller_env” is missing, with no default) occurs : please uninstall ggtree and run “remotes::install_github(”YuLab-SMU/ggtree”)“.
irGSEA.bubble.plot <- irGSEA.bubble(object = result.dge,
method = "RRA",
top = 50)
irGSEA.bubble.plot
Show the intersections of significant gene sets among clusters in RRA
Don’t worry if warning happens : the condition has length > 1 and only the first element will be used. It’s ok.
irGSEA.upset.plot <- irGSEA.upset(object = result.dge,
method = "RRA")
irGSEA.upset.plot
Show the intersections of significant gene sets among clusters in all methods
irGSEA.barplot.plot <- irGSEA.barplot(object = result.dge,
method = c("AUCell", "UCell", "singscore",
"ssgsea", "JASMINE", "viper", "RRA"))
irGSEA.barplot.plot
Show the expression and distribution of special gene sets in special gene set enrichment analysis method
Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell on UMAP plot.
scatterplot <- irGSEA.density.scatterplot(object = pbmc3k.final,
method = "UCell",
show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE",
reduction = "umap")
scatterplot
Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell among clusters.
halfvlnplot <- irGSEA.halfvlnplot(object = pbmc3k.final,
method = "UCell",
show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE")
halfvlnplot
Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” between AUCell, UCell, singscore, ssgsea, JASMINE and viper among clusters.
vlnplot <- irGSEA.vlnplot(object = pbmc3k.final,
method = c("AUCell", "UCell", "singscore", "ssgsea",
"JASMINE", "viper"),
show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE")
vlnplot
Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell among clusters.
ridgeplot <- irGSEA.ridgeplot(object = pbmc3k.final,
method = "UCell",
show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE")
#> Warning in ggridges::geom_density_ridges(jittered_points = TRUE, scale = 0.95,
#> : Ignoring unknown parameters: `size`
ridgeplot
#> Picking joint bandwidth of 0.00533
Show the expression and distribution of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell among clusters.
densityheatmap <- irGSEA.densityheatmap(object = pbmc3k.final,
method = "UCell",
show.geneset = "HALLMARK-INFLAMMATORY-RESPONSE")
densityheatmap
calculate the hub gene of the geneset based on the correlation between the geneset’s score and the expression or rank of gene included in the geneset
hub.result <- irGSEA.hub(object = pbmc3k.final, assay = "RNA", slot = "data",
method = c("AUCell","UCell","singscore", "ssgsea",
"JASMINE", "viper"),
show.geneset = c("HALLMARK-INFLAMMATORY-RESPONSE",
"HALLMARK-APOPTOSIS"),
ncores = 4, type = "rank", maxRank = 2000, top = 5,
correlation.color = c("#0073c2","white","#efc000"),
method.color = NULL)
#> AUCell
#> HALLMARK-INFLAMMATORY-RESPONSE
#> HALLMARK-APOPTOSIS
#> UCell
#> HALLMARK-INFLAMMATORY-RESPONSE
#> HALLMARK-APOPTOSIS
#> singscore
#> HALLMARK-INFLAMMATORY-RESPONSE
#> HALLMARK-APOPTOSIS
#> ssgsea
#> HALLMARK-INFLAMMATORY-RESPONSE
#> HALLMARK-APOPTOSIS
#> JASMINE
#> HALLMARK-INFLAMMATORY-RESPONSE
#> HALLMARK-APOPTOSIS
#> viper
#> HALLMARK-INFLAMMATORY-RESPONSE
#> HALLMARK-APOPTOSIS
#> Warning: Unknown or uninitialised column: `text`.
#> Unknown or uninitialised column: `text`.
head(hub.result$hub_result)
#> method geneset gene correlation p.value
#> cor AUCell HALLMARK-INFLAMMATORY-RESPONSE ABCA1 -0.0108152883 5.787291e-01
#> cor1 AUCell HALLMARK-INFLAMMATORY-RESPONSE ABI1 0.0790188630 4.845537e-05
#> cor2 AUCell HALLMARK-INFLAMMATORY-RESPONSE ACVR1B 0.0533361541 6.142516e-03
#> cor3 AUCell HALLMARK-INFLAMMATORY-RESPONSE ACVR2A -0.0071294398 7.143579e-01
#> cor4 AUCell HALLMARK-INFLAMMATORY-RESPONSE ADM 0.0790702481 4.790793e-05
#> cor5 AUCell HALLMARK-INFLAMMATORY-RESPONSE ADORA2B 0.0005949537 9.756338e-01
hub.result$hub_plot$`HALLMARK-APOPTOSIS`
hub.result$hub_plot$`HALLMARK-INFLAMMATORY-RESPONSE`
#### work with clusterProfiler package ####
# load library
library(clusterProfiler)
library(tidyverse)
### kegg ###
# download kegg pathway (human) and write as gson file
kk <- clusterProfiler::gson_KEGG(species = "hsa")
gson::write.gson(kk, file = "./KEGG_20231128.gson")
# read gson file
kk2 <- gson::read.gson("./KEGG_20231128.gson")
# Convert to a data frame
kegg.list <- dplyr::left_join(kk2@gsid2name,
kk2@gsid2gene,
by = "gsid")
head(kegg.list)
# gsid name gene
# 1 hsa01100 Metabolic pathways 10
# 2 hsa01100 Metabolic pathways 100
# 3 hsa01100 Metabolic pathways 10005
# 4 hsa01100 Metabolic pathways 10007
# 5 hsa01100 Metabolic pathways 100137049
# 6 hsa01100 Metabolic pathways 10020
# Convert gene ID to gene symbol
gene_name <- clusterProfiler::bitr(kegg.list$gene,
fromType = "ENTREZID",
toType = "SYMBOL",
OrgDb = "org.Hs.eg.db")
kegg.list <- dplyr::full_join(kegg.list,
gene_name,
by = c("gene"="ENTREZID"))
# remove NA value if exist
kegg.list <- kegg.list[complete.cases(kegg.list[, c("gene", "SYMBOL")]), ]
head(kegg.list)
# gsid name gene SYMBOL
# 1 hsa01100 Metabolic pathways 10 NAT2
# 2 hsa01100 Metabolic pathways 100 ADA
# 3 hsa01100 Metabolic pathways 10005 ACOT8
# 4 hsa01100 Metabolic pathways 10007 GNPDA1
# 5 hsa01100 Metabolic pathways 100137049 PLA2G4B
# 6 hsa01100 Metabolic pathways 10020 GNE
# convert to list required by irGSEA package
kegg.list$name <- factor(kegg.list$name)
kegg.list <- kegg.list %>%
dplyr::group_split(name, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(SYMBOL) %>% unique(.)) %>%
purrr::set_names(levels(kegg.list$name))
head(kegg.list)
### go bp ###
# download go bp (human) and write as gson file
go <- clusterProfiler::gson_GO(OrgDb = "org.Hs.eg.db", ont = "BP")
gson::write.gson(go, file = "./go_20231128.gson")
# read gson file
go2 <- gson::read.gson("./go_20231128.gson")
# Convert to a data frame
go.list <- dplyr::left_join(go2@gsid2name,
go2@gsid2gene,
by = "gsid")
head(go.list)
# gsid name gene
# 1 GO:0000001 mitochondrion inheritance <NA>
# 2 GO:0000002 mitochondrial genome maintenance 142
# 3 GO:0000002 mitochondrial genome maintenance 291
# 4 GO:0000002 mitochondrial genome maintenance 1763
# 5 GO:0000002 mitochondrial genome maintenance 1890
# 6 GO:0000002 mitochondrial genome maintenance 2021
# Convert gene ID to gene symbol
go.list <- dplyr::full_join(go.list,
go2@gene2name,
by = c("gene"="ENTREZID"))
# remove NA value if exist
go.list <- go.list[complete.cases(go.list[, c("gene", "SYMBOL")]), ]
head(go.list)
# gsid name gene SYMBOL
# 2 GO:0000002 mitochondrial genome maintenance 142 PARP1
# 3 GO:0000002 mitochondrial genome maintenance 291 SLC25A4
# 4 GO:0000002 mitochondrial genome maintenance 1763 DNA2
# 5 GO:0000002 mitochondrial genome maintenance 1890 TYMP
# 6 GO:0000002 mitochondrial genome maintenance 2021 ENDOG
# 7 GO:0000002 mitochondrial genome maintenance 3980 LIG3
# convert to list required by irGSEA package
go.list$name <- factor(go.list$name)
go.list <- go.list %>%
dplyr::group_split(name, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(SYMBOL) %>% unique(.)) %>%
purrr::set_names(levels(go.list$name))
head(go.list)
#### work with newest Msigdb ####
# https://data.broadinstitute.org/gsea-msigdb/msigdb/release/
# In this page, you can download human/mouse gmt file or db.zip file
# The db.zip file contains metadata information for the gene set
# load library
library(clusterProfiler)
library(tidyverse)
library(DBI)
library(RSQLite)
### db.zip ###
# download zip file and unzip zip file
zip_url <- "https://data.broadinstitute.org/gsea-msigdb/msigdb/release/2023.2.Hs/msigdb_v2023.2.Hs.db.zip"
local_zip_path <- "./msigdb_v2023.2.Hs.db.zip"
download.file(zip_url, local_zip_path)
unzip(local_zip_path, exdir = "./")
# code modified by https://rdrr.io/github/cashoes/sear/src/data-raw/1_parse_msigdb_sqlite.r
con <- DBI::dbConnect(RSQLite::SQLite(), dbname = './msigdb_v2023.2.Hs.db')
DBI::dbListTables(con)
# define tables we want to combine
geneset_db <- dplyr::tbl(con, 'gene_set') # standard_name, collection_name
details_db <- dplyr::tbl(con, 'gene_set_details') # description_brief, description_full
geneset_genesymbol_db <- dplyr::tbl(con, 'gene_set_gene_symbol') # meat and potatoes
genesymbol_db <- dplyr::tbl(con, 'gene_symbol') # mapping from ids to gene symbols
collection_db <- dplyr::tbl(con, 'collection') %>% dplyr::select(collection_name, full_name) # collection metadata
# join tables
msigdb <- geneset_db %>%
dplyr::left_join(details_db, by = c('id' = 'gene_set_id')) %>%
dplyr::left_join(collection_db, by = 'collection_name') %>%
dplyr::left_join(geneset_genesymbol_db, by = c('id' = 'gene_set_id')) %>%
dplyr::left_join(genesymbol_db, by = c('gene_symbol_id' = 'id')) %>%
dplyr::select(collection = collection_name, subcollection = full_name, geneset = standard_name, description = description_brief, symbol) %>%
dplyr::as_tibble()
# clean up
DBI::dbDisconnect(con)
unique(msigdb$collection)
# [1] "C1" "C2:CGP" "C2:CP:BIOCARTA"
# [4] "C2:CP:KEGG_LEGACY" "C2:CP:PID" "C3:MIR:MIRDB"
# [7] "C3:MIR:MIR_LEGACY" "C3:TFT:GTRD" "C3:TFT:TFT_LEGACY"
# [10] "C4:3CA" "C4:CGN" "C4:CM"
# [13] "C6" "C7:IMMUNESIGDB" "C7:VAX"
# [16] "C8" "C5:GO:BP" "C5:GO:CC"
# [19] "C5:GO:MF" "H" "C5:HPO"
# [22] "C2:CP:KEGG_MEDICUS" "C2:CP:REACTOME" "C2:CP:WIKIPATHWAYS"
# [25] "C2:CP"
unique(msigdb$subcollection)
# [1] "C1" "C2:CGP" "C2:CP:BIOCARTA"
# [4] "C2:CP:KEGG_LEGACY" "C2:CP:PID" "C3:MIR:MIRDB"
# [7] "C3:MIR:MIR_LEGACY" "C3:TFT:GTRD" "C3:TFT:TFT_LEGACY"
# [10] "C4:3CA" "C4:CGN" "C4:CM"
# [13] "C6" "C7:IMMUNESIGDB" "C7:VAX"
# [16] "C8" "C5:GO:BP" "C5:GO:CC"
# [19] "C5:GO:MF" "H" "C5:HPO"
# [22] "C2:CP:KEGG_MEDICUS" "C2:CP:REACTOME" "C2:CP:WIKIPATHWAYS"
# [25] "C2:CP"
# convert to list[hallmarker] required by irGSEA package
msigdb.h <- msigdb %>%
dplyr::filter(collection=="H") %>%
dplyr::select(c("geneset", "symbol"))
msigdb.h$geneset <- factor(msigdb.h$geneset)
msigdb.h <- msigdb.h %>%
dplyr::group_split(geneset, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(symbol) %>% unique(.)) %>%
purrr::set_names(levels(msigdb.h$geneset))
# convert to list[go bp] required by irGSEA package
msigdb.go.bp <- msigdb %>%
dplyr::filter(collection=="C5:GO:BP") %>%
dplyr::select(c("geneset", "symbol"))
msigdb.go.bp$geneset <- factor(msigdb.go.bp$geneset)
msigdb.go.bp <- msigdb.go.bp %>%
dplyr::group_split(geneset, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(symbol) %>% unique(.)) %>%
purrr::set_names(levels(msigdb.go.bp$geneset))
# convert to list[KEGG] required by irGSEA package
msigdb.kegg <- msigdb %>%
dplyr::filter(collection=="C2:CP:KEGG_MEDICUS") %>%
dplyr::select(c("geneset", "symbol"))
msigdb.kegg$geneset <- factor(msigdb.kegg$geneset)
msigdb.kegg <- msigdb.kegg %>%
dplyr::group_split(geneset, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(symbol) %>% unique(.)) %>%
purrr::set_names(levels(msigdb.kegg$geneset))
# Look for the gene sets associated with angiogenesis from gene sets names and
# gene sets descriptions
category <- c("angiogenesis", "vessel")
msigdb.vessel <- list()
for (i in category) {
# Ignore case matching
find.index.description <- stringr::str_detect(msigdb$description, pattern = regex(all_of(i), ignore_case=TRUE))
find.index.name <- stringr::str_detect(msigdb$geneset, pattern = regex(all_of(i), ignore_case=TRUE))
msigdb.vessel[[i]] <- msigdb[find.index.description | find.index.name, ] %>% mutate(category = i)
}
msigdb.vessel <- do.call(rbind, msigdb.vessel)
head(msigdb.vessel)
# # A tibble: 6 × 6
# collection subcollection geneset description symbol category
# <chr> <chr> <chr> <chr> <chr> <chr>
# 1 C2:CGP Chemical and Genetic Perturbations HU_ANGIOGENESIS_UP Up-regulated … HECW1 angioge…
# 2 C2:CGP Chemical and Genetic Perturbations HU_ANGIOGENESIS_UP Up-regulated … JADE2 angioge…
# 3 C2:CGP Chemical and Genetic Perturbations HU_ANGIOGENESIS_UP Up-regulated … SEMA3C angioge…
# 4 C2:CGP Chemical and Genetic Perturbations HU_ANGIOGENESIS_UP Up-regulated … STUB1 angioge…
# 5 C2:CGP Chemical and Genetic Perturbations HU_ANGIOGENESIS_UP Up-regulated … FAH angioge…
# 6 C2:CGP Chemical and Genetic Perturbations HU_ANGIOGENESIS_UP Up-regulated … COL7A1 angioge…
length(unique(msigdb.vessel$geneset))
# [1] 112
# convert gene sets associated with angiogenesis to list
# required by irGSEA package
msigdb.vessel <- msigdb.vessel %>%
dplyr::select(c("geneset", "symbol"))
msigdb.vessel$geneset <- factor(msigdb.vessel$geneset)
msigdb.vessel <- msigdb.vessel %>%
dplyr::group_split(geneset, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(symbol) %>% unique(.)) %>%
purrr::set_names(levels(msigdb.vessel$geneset))
### gmt file ###
# download gmt file
gmt_url <- "https://data.broadinstitute.org/gsea-msigdb/msigdb/release/2023.2.Hs/msigdb.v2023.2.Hs.symbols.gmt"
local_gmt <- "./msigdb.v2023.2.Hs.symbols.gmt"
download.file(gmt_url , local_gmt)
msigdb <- clusterProfiler::read.gmt("./msigdb.v2023.2.Hs.symbols.gmt")
# convert to list[hallmarker] required by irGSEA package
msigdb.h <- msigdb %>%
dplyr::filter(str_detect(term, pattern = regex("HALLMARK_", ignore_case=TRUE)))
msigdb.h$term <- factor(msigdb.h$term)
msigdb.h <- msigdb.h %>%
dplyr::group_split(term, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(gene) %>% unique(.)) %>%
purrr::set_names(levels(msigdb.h$term))
# convert to list[go bp] required by irGSEA package
msigdb.go.bp <- msigdb %>%
dplyr::filter(str_detect(term, pattern = regex("GOBP_", ignore_case=TRUE)))
msigdb.go.bp$term <- factor(msigdb.go.bp$term)
msigdb.go.bp <- msigdb.go.bp %>%
dplyr::group_split(term, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(gene) %>% unique(.)) %>%
purrr::set_names(levels(msigdb.go.bp$term))
# convert to list[KEGG] required by irGSEA package
msigdb.kegg <- msigdb %>%
dplyr::filter(str_detect(term, pattern = regex("KEGG_", ignore_case=TRUE)))
msigdb.kegg$term <- factor(msigdb.kegg$term)
msigdb.kegg <- msigdb.kegg %>%
dplyr::group_split(term, .keep = F) %>%
purrr::map( ~.x %>% dplyr::pull(gene) %>% unique(.)) %>%
purrr::set_names(levels(msigdb.kegg$term))