Try the new
jello
web demo!
Filter JSON and JSON Lines data with Python syntax
jello
is similar to jq
in that it processes JSON and JSON Lines data except jello
uses standard python dict and list syntax.
JSON or JSON Lines can be piped into jello
(JSON Lines are automatically slurped into a list of dictionaries) and are available as the variable _
. Processed data can be output as JSON, JSON Lines, bash array lines, or a grep-able schema.
For more information on the motivations for this project, see my blog post.
You can install jello
via pip
or by downloading the correct binary for your architecture and running it anywhere on your filesystem.
For the most up-to-date version and the most cross-platform option, use pip
or pip3
to download and install jello
directly from PyPi:
pip3 install jello
Linux and macOS x86_64 binaries are built from PyPi and can be copied to any location in your path and run. These binaries may not always be on the very latest jello
version, but are regularly updated.
Version | File | SHA256 Hash (binary file) |
---|---|---|
1.2.9 | jello-1.2.9-linux.tar.gz | ffe8dfe2cc1dc446aeade32078db654de604176976be5dee89f83f0049551c45 |
Version | File | SHA256 Hash (binary file) |
---|---|---|
1.2.9 | jello-1.2.9-darwin.tar.gz | 9355bf19212cce60f5f592a1a778fdf26984f4b86968ceca2a3e99792c258037 |
<JSON Data> | jello [OPTIONS] [QUERY]
QUERY
is optional and can be most any valid python code. _
is the sanitized JSON from STDIN presented as a python dict or list of dicts. If QUERY
is omitted then the original JSON input will simply be pretty printed.
A simple query:
$ cat data.json | jello '_["foo"]'
-c
compact print JSON output instead of pretty printing-i
initialize environment with a custom config file-l
lines output (suitable for bash array assignment)-m
monochrome output-n
print selectednull
values-r
raw output of selected strings (no quotes)-s
print the JSON schema in grep-able format-h
help-v
version info
Use the -l
option to print JSON array output in a manner suitable to be assigned to a bash array. The -r
option can be used to remove quotation marks around strings. If you want null
values to be printed as null
, use the -n
option, otherwise they are skipped.
variable=($(cat data.json | jello -rl '_["foo"]'))
You can use the -i
option to initialize the jello
environment with your own configuration file. The configuration file accepts valid python code where you can set the jello
options you would like enabled or disabled, customize your colors, add import
statements for your favorite modules, and define your own functions.
The file must be named .jelloconf.py
and must be located in the proper directory based on the OS platform:
- Linux, unix, macOS:
~/
- Windows:
%appdata%/
To set jello
options in the .jelloconf.py
file, add any of the following and set to True
or False
:
mono = True # -m option
compact = True # -c option
lines = True # -l option
raw = True # -r option
nulls = True # -n option
schema = True # -s option
You can customize the colors by setting the following variables to one of the following string values: 'black'
, 'red'
, 'green'
, 'yellow'
, 'blue'
, 'magenta'
, 'cyan'
, 'gray'
, 'brightblack'
, 'brightred'
, 'brightgreen'
, 'brightyellow'
, 'brightblue'
, 'brightmagenta'
, 'brightcyan'
, or 'white'
.
keyname_color = 'blue' # Key names
keyword_color = 'brightblack' # true, false, null
number_color = 'magenta' # integers, floats
string_color = 'green' # strings
arrayid_color = 'red' # array IDs in Schema view
arraybracket_color = 'magenta' # array brackets in Schema view
Note: Any colors set via the
JELLO_COLORS
environment variable will take precedence over any color values set in the.jelloconf.py
configuration file
To import a module (e.g. glom
) during initialization, just add the import
statement to your .jelloconf.py
file:
from glom import *
Then you can use glom
in your jello
filters without importing:
$ jc -a | jello -i 'glom(_, "parsers.25.name")'
"lsblk"
You can also add functions to your initialization file. For example, you could simplify glom
use by adding the following function to .jelloconf.py
:
def g(q, data=_):
import glom
return glom.glom(data, q)
Then you can use the following syntax to filter the JSON data:
$ jc -a | jello -i 'g("parsers.6.compatible")'
[
"linux",
"darwin",
"cygwin",
"win32",
"aix",
"freebsd"
]
In addition to setting custom colors in the .jelloconf.py
intialization file, you can also set them via the JELLO_COLORS
environment variable. Any colors set in the environment variable will take precedence over any colors set in the initialization file.
The JELLO_COLORS
environment variable takes six comma separated string values in the following format:
JELLO_COLORS=<keyname_color>,<keyword_color>,<number_color>,<string_color>,<arrayid_color>,<arraybracket_color>
Where colors are: black
, red
, green
, yellow
, blue
, magenta
, cyan
, gray
, brightblack
, brightred
, brightgreen
, brightyellow
, brightblue
, brightmagenta
, brightcyan
, white
, or default
For example, to set to the default colors:
JELLO_COLORS=blue,brightblack,magenta,green,red,magenta
or
JELLO_COLORS=default,default,default,default,default,default
$ jc -a | jello -s
.name = "jc";
.version = "1.10.2";
.description = "jc cli output JSON conversion tool";
.author = "Kelly Brazil";
.author_email = "[email protected]";
.parser_count = 50;
.parsers[0].name = "airport";
.parsers[0].argument = "--airport";
.parsers[0].version = "1.0";
.parsers[0].description = "airport -I command parser";
.parsers[0].author = "Kelly Brazil";
.parsers[0].author_email = "[email protected]";
.parsers[0].compatible[0] = "darwin";
.parsers[0].magic_commands[0] = "airport -I";
.parsers[1].name = "airport_s";
.parsers[1].argument = "--airport-s";
.parsers[1].version = "1.0";
...
$ echo '{"t1":-30, "t2":-20, "t3":-10, "t4":0}' | jello '\
keys = _.keys()
vals = _.values()
cel = list(map(lambda x: (float(5)/9)*(x-32), vals))
dict(zip(keys, cel))'
{
"t1": -34.44444444444444,
"t2": -28.88888888888889,
"t3": -23.333333333333336,
"t4": -17.77777777777778
}
$ jc -a | jello 'len([entry for entry in _["parsers"] if "darwin" in entry["compatible"]])'
32
Output as JSON array
$ jc -a | jello '\
result = []
for entry in _["parsers"]:
if "darwin" in entry["compatible"]:
result.append(entry["name"])
result'
[
"airport",
"airport_s",
"arp",
"crontab",
"crontab_u",
...
]
Output as bash array
$ jc -a | jello -rl '\
result = []
for entry in _["parsers"]:
if "darwin" in entry["compatible"]:
result.append(entry["name"])
result'
airport
airport_s
arp
crontab
crontab_u
...
Output as JSON array
$ jc -a | jello '[entry["name"] for entry in _["parsers"] if "darwin" in entry["compatible"]]'
[
"airport",
"airport_s",
"arp",
"crontab",
"crontab_u",
...
]
Output as bash array
$ jc -a | jello -rl '[entry["name"] for entry in _["parsers"] if "darwin" in entry["compatible"]]'
airport
airport_s
arp
crontab
crontab_u
...
$ echo '{"login_name": "joeuser"}' | jello '\
True if os.getenv("LOGNAME") == _["login_name"] else False'
true
You can import and use your favorite modules to manipulate the data. For example, using glom
:
$ jc -a | jello '\
from glom import *
glom(_, ("parsers", ["name"]))'
[
"airport",
"airport_s",
"arp",
"blkid",
"crontab",
"crontab_u",
"csv",
...
]
The data from this example comes from https://programminghistorian.org/assets/jq_twitter.json
Under Grouping and Counting, Matthew describes an advanced jq
filter against a sample Twitter dataset that includes JSON Lines data. There he describes the following query:
“We can now create a table of users. Let’s create a table with columns for the user id, user name, followers count, and a column of their tweet ids separated by a semicolon.”
https://programminghistorian.org/en/lessons/json-and-jq
Here is a simple solution using jello
:
$ cat jq_twitter.json | jello -l '\
user_ids = set()
for tweet in _:
user_ids.add(tweet["user"]["id"])
result = []
for user in user_ids:
user_profile = {}
tweet_ids = []
for tweet in _:
if tweet["user"]["id"] == user:
user_profile.update({
"user_id": user,
"user_name": tweet["user"]["screen_name"],
"user_followers": tweet["user"]["followers_count"]})
tweet_ids.append(str(tweet["id"]))
user_profile["tweet_ids"] = ";".join(tweet_ids)
result.append(user_profile)
result'
...
{"user_id": 2696111005, "user_name": "EGEVER142", "user_followers": 1433, "tweet_ids": "619172303654518784"}
{"user_id": 42226593, "user_name": "shirleycolleen", "user_followers": 2114, "tweet_ids": "619172281294655488;619172179960328192"}
{"user_id": 106948003, "user_name": "MrKneeGrow", "user_followers": 172, "tweet_ids": "501064228627705857"}
{"user_id": 18270633, "user_name": "ahhthatswhy", "user_followers": 559, "tweet_ids": "501064204661850113"}
{"user_id": 14331818, "user_name": "edsu", "user_followers": 4220, "tweet_ids": "615973042443956225;618602288781860864"}
{"user_id": 2569107372, "user_name": "SlavinOleg", "user_followers": 35, "tweet_ids": "501064198973960192;501064202794971136;501064214467731457;501064215759568897;501064220121632768"}
{"user_id": 22668719, "user_name": "nodehyena", "user_followers": 294, "tweet_ids": "501064222772445187"}
...