"结巴"中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- Scroll down for English documentation.
-
支持三种分词模式:
- 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
-
支持繁体分词
-
支持自定义词典
https://jiebademo.ap01.aws.af.cm/
(Powered by Appfog)
网站代码:https://github.com/fxsjy/jiebademo
- 全自动安装:
easy_install jieba
或者pip install jieba
- 半自动安装:先下载 https://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
- 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
- 通过
import jieba
来引用
- 目前 master 分支是只支持 Python2.x 的
- Python 3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
git clone https://github.com/fxsjy/jieba.git
git checkout jieba3k
python setup.py install
- 或使用pip3安装: pip3 install jieba3k
- 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
- 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
- :分词
jieba.cut
方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型jieba.cut_for_search
方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细- 注意:待分词的字符串可以是 GBK 字符串、UTF-8 字符串或者 unicode
jieba.cut
以及jieba.cut_for_search
返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...)) 转化为 list
代码示例( 分词 )
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print ", ".join(seg_list)
输出:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
- :添加自定义词典
-
开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
-
用法: jieba.load_userdict(file_name) # file_name 为自定义词典的路径
-
词典格式和
dict.txt
一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开 -
范例:
-
自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
-
用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
-
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
-
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
-
-
-
"通过用户自定义词典来增强歧义纠错能力" --- fxsjy#14
- :关键词提取
- jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先
import jieba.analyse
- sentence 为待提取的文本
- topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
- withWeight 为是否一并返回关键词权重值,默认值为 False
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
- 用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
- 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
- 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py
关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径
- 用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
- 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
- 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py
关键词一并返回关键词权重值示例
算法论文: TextRank: Bringing Order into Texts
- 将待抽取关键词的文本进行分词
- 以固定窗口大小(我选的5,可适当调整),词之间的共现关系,构建图
- 计算图中节点的PageRank,注意是无向带权图
jieba.analyse.textrank(raw_text)
来自__main__
的示例结果:
吉林 1.0
欧亚 0.864834432786
置业 0.553465925497
实现 0.520660869531
收入 0.379699688954
增资 0.355086023683
子公司 0.349758490263
全资 0.308537396283
城市 0.306103738053
商业 0.304837414946
- : 词性标注
- 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法
- 用法示例
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
... print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns
- : 并行分词
-
原理:将目标文本按行分隔后,把各行文本分配到多个 python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
-
基于 python 自带的 multiprocessing 模块,目前暂不支持 windows
-
用法:
jieba.enable_parallel(4)
# 开启并行分词模式,参数为并行进程数jieba.disable_parallel()
# 关闭并行分词模式
-
例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
-
实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
- : Tokenize:返回词语在原文的起始位置
- 注意,输入参数只接受 unicode
- 默认模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限公司 start: 6 end:10
- 搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
for tk in result:
print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限 start: 6 end:8
word 公司 start: 8 end:10
word 有限公司 start: 6 end:10
- : ChineseAnalyzer for Whoosh 搜索引擎
- 引用:
from jieba.analyse import ChineseAnalyzer
- 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
- : 命令行分词
使用示例:cat news.txt | python -m jieba > cut_result.txt
命令行选项(翻译):
使用: python -m jieba [options] filename
结巴命令行界面。
固定参数:
filename 输入文件
可选参数:
-h, --help 显示此帮助信息并退出
-d [DELIM], --delimiter [DELIM]
使用 DELIM 分隔词语,而不是用默认的' / '。
若不指定 DELIM,则使用一个空格分隔。
-D DICT, --dict DICT 使用 DICT 代替默认词典
-u USER_DICT, --user-dict USER_DICT
使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
-a, --cut-all 全模式分词
-n, --no-hmm 不使用隐含马尔可夫模型
-q, --quiet 不输出载入信息到 STDERR
-V, --version 显示版本信息并退出
如果没有指定文件名,则使用标准输入。
--help
选项输出:
$> python -m jieba --help
usage: python -m jieba [options] filename
Jieba command line interface.
positional arguments:
filename input file
optional arguments:
-h, --help show this help message and exit
-d [DELIM], --delimiter [DELIM]
use DELIM instead of ' / ' for word delimiter; or a
space if it is used without DELIM
-D DICT, --dict DICT use DICT as dictionary
-u USER_DICT, --user-dict USER_DICT
use USER_DICT together with the default dictionary or
DICT (if specified)
-a, --cut-all full pattern cutting
-n, --no-hmm don't use the Hidden Markov Model
-q, --quiet don't print loading messages to stderr
-V, --version show program's version number and exit
If no filename specified, use STDIN instead.
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。
import jieba
jieba.initialize() # 手动初始化(可选)
在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
jieba.set_dictionary('data/dict.txt.big')
例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py
-
占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
-
支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big')
作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis
作者:yanyiwu 地址:https://github.com/aszxqw/cppjieba
作者:yanyiwu 地址:https://github.com/aszxqw/nodejieba
作者:falood 地址:https://github.com/falood/exjieba
作者:qinwf 地址:https://github.com/qinwf/jiebaR
作者:yanyiwu 地址:https://github.com/aszxqw/iosjieba
- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
https://github.com/fxsjy/jieba/blob/master/Changelog
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- Support three types of segmentation mode:
-
- Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis.
-
- Full Mode gets all the possible words from the sentence. Fast but not accurate.
-
- Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines.
- Fully automatic installation:
easy_install jieba
orpip install jieba
- Semi-automatic installation: Download https://pypi.python.org/pypi/jieba/ , run
python setup.py install
after extracting. - Manual installation: place the
jieba
directory in the current directory or pythonsite-packages
directory. import jieba
.
- Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations.
- Use dynamic programming to find the most probable combination based on the word frequency.
- For unknown words, a HMM-based model is used with the Viterbi algorithm.
- : Cut
- The
jieba.cut
function accepts three input parameters: the first parameter is the string to be cut; the second parameter iscut_all
, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut
returns an generator, from which you can use afor
loop to get the segmentation result (in unicode), orlist(jieba.cut( ... ))
to create a list.jieba.cut_for_search
accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines.
Code example: segmentation
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print ", ".join(seg_list)
Output:
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
- : Add a custom dictionary
-
Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy.
-
Usage:
jieba.load_userdict(file_name) # file_name is the path of the custom dictionary
-
The dictionary format is the same as that of
analyse/idf.txt
: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space -
Example:
云计算 5 李小福 2 创新办 3 [Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / [After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
- : Keyword Extraction
jieba.analyse.extract_tags(sentence,topK,withWeight) # needs to first import jieba.analyse
sentence
: the text to be extractedtopK
: return how many keywords with the highest TF/IDF weights. The default value is 20withWeight
: whether return TF/IDF weights with the keywords. The default value is False
Example (keyword extraction)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
Developers can specify their own custom IDF corpus in jieba keyword extraction
- Usage:
jieba.analyse.set_idf_path(file_name) # file_name is the path for the custom corpus
- Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
- Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py
Developers can specify their own custom stop words corpus in jieba keyword extraction
- Usage:
jieba.analyse.set_stop_words(file_name) # file_name is the path for the custom corpus
- Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
- Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py
There's also a TextRank implementation available.
Use: jieba.analyse.textrank(raw_text)
.
- : Part of Speech Tagging
- Tags the POS of each word after segmentation, using labels compatible with ictclas.
- Example:
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
... print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns
- : Parallel Processing
-
Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster.
-
Based on the multiprocessing module of Python.
-
Usage:
jieba.enable_parallel(4)
# Enable parallel processing. The parameter is the number of processes.jieba.disable_parallel()
# Disable parallel processing.
-
Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
-
Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version.
- : Tokenize: return words with position
- The input must be unicode
- Default mode
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限公司 start: 6 end:10
- Search mode
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
for tk in result:
print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限 start: 6 end:8
word 公司 start: 8 end:10
word 有限公司 start: 6 end:10
- : ChineseAnalyzer for Whoosh
from jieba.analyse import ChineseAnalyzer
- Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
- : Command Line Interface
$> python -m jieba --help
usage: python -m jieba [options] filename
Jieba command line interface.
positional arguments:
filename input file
optional arguments:
-h, --help show this help message and exit
-d [DELIM], --delimiter [DELIM]
use DELIM instead of ' / ' for word delimiter; or a
space if it is used without DELIM
-D DICT, --dict DICT use DICT as dictionary
-u USER_DICT, --user-dict USER_DICT
use USER_DICT together with the default dictionary or
DICT (if specified)
-a, --cut-all full pattern cutting
-n, --no-hmm don't use the Hidden Markov Model
-q, --quiet don't print loading messages to stderr
-V, --version show program's version number and exit
If no filename specified, use STDIN instead.
By default, Jieba don't build the prefix dictionary unless it's necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
import jieba
jieba.initialize() # (optional)
You can also specify the dictionary (not supported before version 0.28) :
jieba.set_dictionary('data/dict.txt.big')
It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download:
-
A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
-
There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
By default, an in-between dictionary is used, called dict.txt
and included in the distribution.
In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big')
or just replace the existing dict.txt
.
- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
https://jiebademo.ap01.aws.af.cm/
(Powered by Appfog)