This repository, maintained by SiFive Inc, makes it easy to get started developing software for the Freedom E and Freedom S Embedded RISC-V Platforms. This SDK is intended to work on any target supported by SiFive's distributions of the RISC-V GNU Toolchain.
Documentation for Freedom E SDK is available here
Freedom E SDK was recently transitioned to using the Freedom Metal compatibility library. If you're looking for the old Freedom E SDK, software examples, and board support files, you can find those on the v1_0 branch.
Freedom Metal (Documentation) is a library developed by SiFive for writing portable software for all of SiFive's RISC-V IP, RISC-V FPGA evaluation images, and development boards. Programs written against the Freedom Metal API are intended to build and run for all SiFive RISC-V targets. This makes Freedom Metal suitable for writing portable tests, bare metal application programming, and as a hardware abstraction layer for porting operating systems to RISC-V.
- Board Support Packages (found under
bsp/
)- Supported Targets:
- SiFive HiFive 1
- sifive-hifive1
- SiFive HiFive 1 Rev B
- sifive-hifive1-revb
- SiFive Freedom E310 Arty
- freedom-e310-arty
- SiFive CoreIP RTL
- coreip-e20-rtl
- coreip-e21-rtl
- coreip-e24-rtl
- coreip-e31-rtl
- coreip-e34-rtl
- coreip-s51-rtl
- coreip-s54-rtl
- coreip-e76-rtl
- coreip-s76-rtl
- SiFive CoreIP Arty FPGA Evaluation targets
- coreip-e20-arty
- coreip-e21-arty
- coreip-e24-arty
- coreip-e31-arty
- coreip-e34-arty
- coreip-s51-arty
- coreip-s54-arty
- coreip-e76-arty
- coreip-s76-arty
- SiFive HiFive 1
- The board support files for the Freedom Metal library are located entirely
within a single target directory in
bsp/<target>/
. For example, the HiFive 1 board support files for Freedom Metal are entirely withinbsp/sifive-hifive1/
and consist of the following:- design.dts
- The DeviceTree description of the target. This file is used to parameterize the Freedom Metal library to the target device. It is included as reference so that users of Freedom Metal are aware of what features and peripherals are available on the target.
- metal.h
- The Freedom Metal machine header which is used internally to Freedom Metal to instantiate structures to support the target device.
- metal.%.lds
- Generated linker scripts for the target. The different scripts allow for different memory configurations.
- openocd.cfg (for development board and FPGA targets)
- Used to configure OpenOCD for flashing and debugging the target device.
- settings.mk
- Used to set
-march
and-mabi
arguments to the RISC-V GNU Toolchain.
- Used to set
- design.dts
- Supported Targets:
- A Few Example Programs (found under
software/
)- hello
- Prints "Hello, World!" to stdout, if a serial device is present on the target.
- return-pass
- Returns status code 0 indicating program success.
- return-fail
- Returns status code 1 indicating program failure.
- example-itim
- Demonstrates how to statically link application code into the Instruction Tightly Integrated Memory (ITIM) if an ITIM is present on the target.
- software-interrupt
- Demonstrates how to register a handler for and trigger a software interrupt
- timer-interrupt
- Demonstrates how to register a handler for and trigger a timer interrupt
- local-interrupt
- Demonstrates how to register a handler for and trigger a local interrupt
- example-pmp
- Demonstrates how to configure a Physical Memory Protection (PMP) region
- sifive-welcome
- Prints the SiFive banner and blinks LEDs
- dhrystone
- "Dhrystone" Benchmark Program by Reinhold P. Weicker
- hello
To use this SDK, you will need the following software available on your machine:
- GNU Make
- Git
- RISC-V GNU Toolchain
- RISC-V OpenOCD (for use with development board and FPGA targets)
- Segger J-LINK (for use with certain development boards)
The RISC-V GNU Toolchain and OpenOCD are available from the SiFive Website at
For OpenOCD and/or RISC-V GNU Toolchain, download the .tar.gz for your platform,
and unpack it to your desired location. Then, use the RISCV_PATH
and
RISCV_OPENOCD_PATH
variables when using the tools:
cp openocd-<date>-<platform>.tar.gz /my/desired/location/
cp riscv64-unknown-elf-gcc-<date>-<platform>.tar.gz /my/desired/location
cd /my/desired/location
tar -xvf openocd-<date>-<platform>.tar.gz
tar -xvf riscv64-unknown-elf-gcc-<date>-<platform>.tar.gz
export RISCV_OPENOCD_PATH=/my/desired/location/openocd
export RISCV_PATH=/my/desired/location/riscv64-unknown-elf-gcc-<date>-<version>
Some targets supported by Freedom E SDK (like the SiFive HiFive1 Rev B) use Segger J-Link OB for programming and debugging. If you intend to use these targets, install the Segger J-Link Software and Documentation Pack for your machine:
Segger J-Link Software Downloads
This repository can be cloned by running the following commands:
git clone --recursive https://github.com/sifive/freedom-e-sdk.git
cd freedom-e-sdk
The --recursive
option is required to clone the git submodules included in the
repository. If at first you omit the --recursive
option, you can achieve
the same effect by updating submodules using the command:
git submodule update --init --recursive
If you'd like to update your SDK to the latest version:
git pull origin master
git submodule update --init --recursive
To compile a bare-metal RISC-V program:
make [PROGRAM=hello] [TARGET=sifive-hifive1] [CONFIGURATION=debug] software
The square brackets in the above command indicate optional parameters for the
Make invocation. As you can see, the default values of these parameters tell
the build script to build the hello
example for the sifive-hifive1
target
with the debug
configuration. If, for example, you wished to build the
timer-interrupt
example for the S51 Arty FPGA Evaluation target,
with the release
configuration, you would instead run the command
make PROGRAM=timer-interrupt TARGET=coreip-s51-arty CONFIGURATION=release software
Building a benchmark program is slightly special in that certain section is required to be loaded in specific memory region. A specialize linker file has been created for its optimal run.
make PROGRAM=dhrystone TARGET=coreip-e31-arty LINK_TARGET=ramrodata software
make [PROGRAM=hello] [TARGET=sifive-hifive1] [CONFIGURATION=debug] upload
make [PROGRAM=hello] [TARGET=sifive-hifive1] [CONFIGURATION=debug] debug
make [PROGRAM=hello] [TARGET=sifive-hifive1] [CONFIGURATION=debug] clean
You can export a program to a standalone project directory using the standalone
target. The resulting project will be locked to a specific TARGET
. Note
that this functionality is only supported for Freedom Metal programs, not the
Legacy Freedom E SDK.
STANDALONE_DEST
is a required argument to provide the desired project location.
make [PROGRAM=hello] [TARGET=sifive-hifive1] [INCLUDE_METAL_SOURCES=1] STANDALONE_DEST=/path/to/desired/location standalone
Run make help
for more commands.
Documentation, Forums, and much more available at