-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactor to simplify support for additional detector types (#3656)
* Refactor EdgeTPU and CPU model handling to detector submodules. * Fix selecting the correct detection device type from the config * Remove detector type check when creating ObjectDetectProcess * Fixes after rebasing to 0.11 * Add init file to detector folder * Rename to detect_api Co-authored-by: Nicolas Mowen <[email protected]> * Add unit test for LocalObjectDetector class * Add configuration for model inputs Support transforming detection regions to RGB or BGR. Support specifying the input tensor shape. The tensor shape has a standard format ["BHWC"] when handed to the detector, but can be transformed in the detector to match the model shape using the model input_tensor config. * Add documentation for new model config parameters * Add input tensor transpose to LocalObjectDetector * Change the model input tensor config to use an enumeration * Updates for model config documentation Co-authored-by: Nicolas Mowen <[email protected]>
- Loading branch information
Showing
17 changed files
with
457 additions
and
151 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
import logging | ||
import numpy as np | ||
|
||
from frigate.detectors.detection_api import DetectionApi | ||
import tflite_runtime.interpreter as tflite | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class CpuTfl(DetectionApi): | ||
def __init__(self, det_device=None, model_config=None, num_threads=3): | ||
self.interpreter = tflite.Interpreter( | ||
model_path=model_config.path or "/cpu_model.tflite", num_threads=num_threads | ||
) | ||
|
||
self.interpreter.allocate_tensors() | ||
|
||
self.tensor_input_details = self.interpreter.get_input_details() | ||
self.tensor_output_details = self.interpreter.get_output_details() | ||
|
||
def detect_raw(self, tensor_input): | ||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) | ||
self.interpreter.invoke() | ||
|
||
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0] | ||
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0] | ||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0] | ||
count = int( | ||
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0] | ||
) | ||
|
||
detections = np.zeros((20, 6), np.float32) | ||
|
||
for i in range(count): | ||
if scores[i] < 0.4 or i == 20: | ||
break | ||
detections[i] = [ | ||
class_ids[i], | ||
float(scores[i]), | ||
boxes[i][0], | ||
boxes[i][1], | ||
boxes[i][2], | ||
boxes[i][3], | ||
] | ||
|
||
return detections |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
import logging | ||
|
||
from abc import ABC, abstractmethod | ||
from typing import Dict | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class DetectionApi(ABC): | ||
@abstractmethod | ||
def __init__(self, det_device=None, model_config=None): | ||
pass | ||
|
||
@abstractmethod | ||
def detect_raw(self, tensor_input): | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import logging | ||
import numpy as np | ||
|
||
from frigate.detectors.detection_api import DetectionApi | ||
import tflite_runtime.interpreter as tflite | ||
from tflite_runtime.interpreter import load_delegate | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class EdgeTpuTfl(DetectionApi): | ||
def __init__(self, det_device=None, model_config=None): | ||
device_config = {"device": "usb"} | ||
if not det_device is None: | ||
device_config = {"device": det_device} | ||
|
||
edge_tpu_delegate = None | ||
|
||
try: | ||
logger.info(f"Attempting to load TPU as {device_config['device']}") | ||
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config) | ||
logger.info("TPU found") | ||
self.interpreter = tflite.Interpreter( | ||
model_path=model_config.path or "/edgetpu_model.tflite", | ||
experimental_delegates=[edge_tpu_delegate], | ||
) | ||
except ValueError: | ||
logger.error( | ||
"No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors." | ||
) | ||
raise | ||
|
||
self.interpreter.allocate_tensors() | ||
|
||
self.tensor_input_details = self.interpreter.get_input_details() | ||
self.tensor_output_details = self.interpreter.get_output_details() | ||
|
||
def detect_raw(self, tensor_input): | ||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) | ||
self.interpreter.invoke() | ||
|
||
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0] | ||
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0] | ||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0] | ||
count = int( | ||
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0] | ||
) | ||
|
||
detections = np.zeros((20, 6), np.float32) | ||
|
||
for i in range(count): | ||
if scores[i] < 0.4 or i == 20: | ||
break | ||
detections[i] = [ | ||
class_ids[i], | ||
float(scores[i]), | ||
boxes[i][0], | ||
boxes[i][1], | ||
boxes[i][2], | ||
boxes[i][3], | ||
] | ||
|
||
return detections |
Oops, something went wrong.