Skip to content

benchopt/benchmark_linear_svm_binary_classif_no_intercept

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Benchmark repository for linear SVM for binary classification

Build Status Python 3.6+

Benchopt is a package to simplify and make more transparent and reproducible the comparisons of optimization algorithms. The linear SVM consists in solving the following program:

\min_w C \sum_{i=1}^{n} max(1 - y_i x_i^\top w, 0) + \frac{1}{2} \sum_{j=1}^p w_j^2

where n (or n_samples) stands for the number of samples, p (or n_features) stands for the number of features and

y \in \mathbb{R}^n, X = [x_1^\top, \dots, x_n^\top]^\top \in \mathbb{R}^{n \times p}

Install

This benchmark can be run using the following commands:

$ pip install -U benchopt
$ git clone https://github.com/benchopt/benchmark_linear_svm_binary_classif_no_intercept
$ benchopt run ./benchmark_linear_svm_binary_classif_no_intercept

Apart from the problem, options can be passed to benchopt run, to restrict the benchmarks to some solvers or datasets, e.g.:

$ benchopt run ./benchmark_linear_svm_binary_classif_no_intercept -s sklearn -d simulated --max-runs 10 --n-repetitions 10

Use benchopt run -h for more details about these options, or visit https://benchopt.github.io/cli.html.

About

Benchopt Benchmark for SVM for binary classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages