Skip to content
forked from pytorch/torchrec

Pytorch domain library for recommendation systems

License

Notifications You must be signed in to change notification settings

aorenste/torchrec

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TorchRec (Beta Release)

Docs

TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs.

TorchRec contains:

  • Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism.
  • The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel, table-wise, row-wise, table-wise-row-wise, column-wise, table-wise-column-wise sharding.
  • The TorchRec planner can automatically generate optimized sharding plans for models.
  • Pipelined training overlaps dataloading device transfer (copy to GPU), inter-device communications (input_dist), and computation (forward, backward) for increased performance.
  • Optimized kernels for RecSys powered by FBGEMM.
  • Quantization support for reduced precision training and inference.
  • Common modules for RecSys.
  • Production-proven model architectures for RecSys.
  • RecSys datasets (criteo click logs and movielens)
  • Examples of end-to-end training such the dlrm event prediction model trained on criteo click logs dataset.

Installation

Torchrec requires Python >= 3.8 and CUDA >= 11.8 (CUDA is highly recommended for performance but not required). The example below shows how to install with Python 3.8 and CUDA 12.1. This setup assumes you have conda installed.

Binaries

Experimental binary on Linux for Python 3.8, 3.9, 3.10, 3.11 and 3.12 (experimental), and CPU, CUDA 11.8 and CUDA 12.1 can be installed via pip wheels from download.pytorch.org and PyPI (only for CUDA 12.1).

Below we show installations for CUDA 12.1 as an example. For CPU or CUDA 11.8, swap "cu121" for "cpu" or "cu118".

Installations

Nightly

pip install torch --index-url https://download.pytorch.org/whl/nightly/cu121
pip install fbgemm-gpu --index-url https://download.pytorch.org/whl/nightly/cu121
pip install torchmetrics==1.0.3
pip install torchrec --index-url https://download.pytorch.org/whl/nightly/cu121

Stable via pytorch.org

pip install torch --index-url https://download.pytorch.org/whl/cu121
pip install fbgemm-gpu --index-url https://download.pytorch.org/whl/cu121
pip install torchmetrics==1.0.3
pip install torchrec --index-url https://download.pytorch.org/whl/cu121

Stable via PyPI (only for CUDA 12.1)

pip install torch
pip install fbgemm-gpu
pip install torchrec

Colab example: introduction + install