Skip to content

Codebase for "Generating multivariate time series with COmmon Source CoordInated GAN (COSCI-GAN)"

License

Notifications You must be signed in to change notification settings

aliseyfi75/COSCI-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Codebase for "Generating multivariate time series with COmmon Source CoordInated GAN (COSCI-GAN)"

Authors: Ali Seyfi, Jean-Francois Rajotte, Raymond T. Ng

Reference: Ali Seyfi, Jean-Francois Rajotte, Raymond T. Ng, "Generating multivariate time series with COmmon Source CoordInated GAN (COSCI-GAN)," Neural Information Processing Systems (NeurIPS), 2022.

Paper Link: https://openreview.net/pdf?id=RP1CtZhEmR

Code Author: Ali Seyfi

Contact: [email protected]

This directory contains implementations of COSCI-GAN framework for synthetic multivariate time series data generation using synthetic and real-world datasets.

You can change the architecture of the generator and discriminator to any arbitrary networks, such as Transformers.

Command inputs:

  • dataset: data_frame_sine_normal, data_frame_sine_freq_change, data_frame_sine_with_anomaly, EEG_Eye_State_ZeroOne_chop_5best_0, EEG_Eye_State_ZeroOne_chop_5best_1, stock_data_24,
  • nepochs: Number of training epochs
  • batch_size: Number of samples in each batch
  • nsamples: Length of each time series
  • withCD: Flag for using Central Discriminator
  • LSTMG: Flag for use LSTM network for Generators, if False, the generators will be MLP
  • LSTMD: Flag for use LSTM network for Discriminators, if False, the discriminators will be MLP
  • criterion: 'BCE', 'MSE'
  • glr: Generators' learning rate
  • dlr: Discriminators' learning rate
  • cdlr: Central Discriminator's learning rate
  • Ngroups: Number of channels/features
  • real_data_fraction: Fraction of real data to be used for training COSCI-GAN
  • CD_type: Type of Central Discriminator network, choice between "MLP" and "LSTM"
  • gamma: Gamma parameter controls the trade-off between Diversity and Correlation preservation as described in the paper
  • noise_len: Length of input noise

Example command

$ python3 run.py --data_name stock_data_24 --nepochs 100 --batch_size 32
--nsamples 24 --withCD True --LSTMG True --LSTMD True --criterion BCE
--glr 0.001 --dlr 0.001 --cdlr 0.0001 --Ngroups 6 --real_data_fraction 10.0
--CD_type MLP --gamma 5.0 --noise_len 32