Skip to content

adverML/multiLID

Repository files navigation

multiLID - Unfolding local growth rate estimates for (almost) perfect adversarial detection

This repository provides the official Python implementation of "Unfolding local growth rate estimates for (almost) perfect adversarial detection".

The multiLID is an improvment of the original LID. This paper is an improvement of the LID [1], which was just meant trying to describe the adversarial subspaces. Later in [2], the LID is even meant not be mathematically effective enough to detect adversarial examples. We did some changes and could improve the detection.

Installation

pip install -r requirements.txt
cd submodules; git submodule add -b multilid https://github.com/adverML/auto-attack.git autoattack

Citation

If this work is useful for your research, please cite our paper:

@article{multilid,
  title={Unfolding local growth rate estimates for (almost) perfect adversarial detection},
  author={Lorenz, Peter and Keuper, Margret and Keuper, Janis},
  journal={arXiv preprint arXiv:2212.06776},
  year={2023}
}

References

[1] Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S., Schoenebeck, G., Song, D., Houle, M. E., & Bailey, J. (2018). Characterizing adversarial subspaces using local intrinsic dimensionality. Paper presented at 6th International Conference on Learning Representations, ICLR 2018, Vancouver, Canada.

[2] Athalye, A., Carlini, N., & Wagner, D. (2018, July). Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In ICML (pp. 274-283). PMLR.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published