SGLFormer: Spiking Global-Local-Fusion Transformer with high performance, this is link
Our models achieve SOTA performance on several datasets (eg. 83.73 % on ImageNet, 96.76 % on CIFAR10, 82.26 % on CIFAR100, 82.9% on CIFAR10-DVS) in directly trained SNNs in 2024/03.
Our codes are based on QKFormer and Spikformer.
Model | Resolution | T | Param. | Top-1 Acc |
---|---|---|---|---|
Swin Transformer | 224x224 | - | 88M | 83.5 |
SGLFormer-8-384 | 224x224 | 4 | 16.25M | 79.44 |
SGLFormer-8-512 | 224x224 | 4 | 28.67M | 82.28 |
SGLFormer-8-512* | 224x224 | 4 | 28.67M | 81.93 |
SGLFormer-8-768* | 224x224 | 4 | 64.02M | 83.73 |
Model | T | Param. | CIFAR10 Top-1 Acc | CIFAR100 Top-1 Acc |
---|---|---|---|---|
SGLFormer-4-384 | 4 | 8.85/8.88M | 96.76 | 82.26 |
Model | Dataset | T | Param. | Top-1 Acc |
---|---|---|---|---|
SGLFormer-3-256 | CIFAR10 DVS | 10 | 2.48M | 82.9 |
SGLFormer-3-256 | CIFAR10 DVS | 16 | 2.58M | 82.6 |
SGLFormer-3-256 | DVS 128 | 10 | 2.08M | 97.2 |
SGLFormer-3-256 | DVS 128 | 16 | 2.17M | 98.6 |
timm==0.3.2 for imagenet, timm==0.6.12 for others; cupy==9.6.0; torch==1.10.0; cuda==11.3.1; cudnn==8.2.1; spikingjelly==0.0.0.0.12; pyyaml==5.3.1;
data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
cd imagenet
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 main.py --accum_iter 2 --batch_size 32 --blr 6e-4 --model sglformer_ima_8_512 --output_dir ./sglformer_ima_8_512
# sglformer_ima_8_512 is SGLFormer-8-512*
# sglformer_ima2_8_512 is SGLFormer-8-512
Setting hyper-parameters in cifar10.yml
cd cifar10
python train.py
Setting hyper-parameters in cifar100.yml
cd cifar100
python train.py
cd dvs128-gesture
python train.py --T=10 --lr=5e-3
cd cifar10-dvs
python train.py --T=10 --lr=5e-3
If you find this repo useful, please consider citing:
@ARTICLE{10.3389/fnins.2024.1371290,
AUTHOR={Zhang, Han and Zhou, Chenlin and Yu, Liutao and Huang, Liwei and Ma, Zhengyu and Fan, Xiaopeng and Zhou, Huihui and Tian, Yonghong },
TITLE={SGLFormer: Spiking Global-Local-Fusion Transformer with high performance},
JOURNAL={Frontiers in Neuroscience},
VOLUME={18},
YEAR={2024},
URL={https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1371290},
DOI={10.3389/fnins.2024.1371290},
ISSN={1662-453X}
}