This is the page for the book Digital Signal Processing with Kernel Methods.
- Image denosing and coding: ViStaCoRe: https://isp.uv.es/soft_imvideo.html
- Interpolation: simpleInterp: https://www.tsc.urjc.es/jlrojo
- Kernel gamma and kernel ARMA: https://isp.uv.es/soft_regression.html
- KARMA: Kernel AutoRegressive Moving Average with SVM: https://isp.uv.es/code/regression/karma.zip
- ARX-RVM: Autorregressive eXogenous Relevance Vector Machine: https://isp.uv.es/code/regression/karma_rvm.zip
-
Simple Regression Toolbox, simpleR: https://isp.uv.es/soft_regression.html
-
MSVR: Multioutput Support Vector Regression: https://isp.uv.es/code/regression/msvr-2-1.zip
-
Semisupervised SVR: https://isp.uv.es/soft_regression.html, https://isp.uv.es/code/regression/demoSemiSVR.zip
-
e-Huber: Epsilon-Huber Support Vector Regression: https://isp.uv.es/code/regression/svr_e_huber.zip
-
KSNR: Kernel Signal to Noise Ratio: https://isp.uv.es/code/regression/ksnr.zip
-
WGPR: Warped GPR: https://www.tsc.uc3m.es/~miguel/downloads.php
-
VHGPR: Variational Heteroscedastic GPR: https://www.tsc.uc3m.es/~miguel/downloads.php
-
Relevance vector machine (RVM): Two available toolboxes are suggested:
- Original: https://www.miketipping.com/sparsebayes.htm
- Multivariate RVM (MRVM) implementation by Arasanathan Thayananthan ([email protected])(c) Copyright University of Cambridge. Please cite the original implementation when appropriate: Multivariate Relevance Vector Machines for Tracking, Arasanathan Thayananthan et al. (University of Cambridge). In Proc. 9th European Conference on Computer Vision 2006.
- NOTE: Wrapper functions to the later MRVM are included in simpleR: https://isp.uv.es/soft_regression.html
-
SVR: The original source code of libsvm can be obtained from https://www.csie.ntu.edu.tw/~cjlin/libsvm/. The same toolbox with some modifications an additions at https://www.uv.es/jordi/soft.htm
-
KARMA: Kernel AutoRegressive Moving Average with SVM: https://isp.uv.es/code/regression/karma.zip
-
ARX-RVM: Autorregressive eXogenous Relevance Vector Machine: https://isp.uv.es/code/regression/karma_rvm.zip
- Kernel Adaptive Filtering Toolbox (KAFBOX): https://github.com/steven2358/kafbox/
- SVM:
- libSVM can be obtained from https://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Alternative toolbox with some additions at https://www.uv.es/jordi/soft.htm
- General-purpose toolboxes for classification: https://isp.uv.es/soft_classification.html
- LS-SVM: https://www.esat.kuleuven.be/sista/lssvmlab/
- KFD: https://github.com/lawrennd/nkfd
- Laplacian SVM:
- Transductive SVM: https://svmlight.joachims.org/
- Semisupervised learning: An interesting collection of semisupervised learning software is available at https://pages.cs.wisc.edu/~jerryzhu/ssl/software.html
- Structured-output SVM:
- Original SVM$ struct toolbox: https://svmlight.joachims.org/
- Some useful wrapper functions at https://www.robots.ox.ac.uk/~vedaldi/svmstruct.html
- Large Margin Filtering: https://remi.flamary.com/soft/soft-filtersvm.html
- Active Learning: Active Learning MATLAB(tm) Toolbox at https://github.com/IPL-UV/altoolbox/
- Density estimation: MATLAB KDE toolbox: https://www.ics.uci.edu/~ihler/code/kde.html
- One-Class SVM:
- libSVM can be obtained from https://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Alternative toolbox with some additions at https://www.uv.es/jordi/soft.htm
- One-Class Support Measure Machine, OCSMM: https://webdav.tuebingen.mpg.de/smm/
- Lots of one-class methods, not necessarily kernels:
- SIMFEAT, A simple Feature Extraction Toolbox: https://isp.uv.es/soft_feature.html
- Kernel dependence estimates:
- A set of MATLAB toolbox for HSIC can be found at https://www.gatsby.ucl.ac.uk/~gretton/indepTestFiles/indep.htm
- Information Theoretical Estimators (ITE) Toolbox: https://bitbucket.org/szzoli/ite/
- For HSIC-based feature extraction methods, use SIMFEAT toolbox and gKDR software at https://www.ism.ac.jp/~fukumizu/software.html
- FastICA: https://research.ics.aalto.fi/ica/fastica/
- KICA: https://www.di.ens.fr/~fbach/kernel-ica/, https://people.kyb.tuebingen.mpg.de/arthur/fastkica.htm
- Domain adaptation:
- Kernel mean matching (KMM): https://www.cs.cmu.edu/~arthurg/covariateShiftFiles/covariateShiftSoftware.html
- Transfer component analysis, TCA: https://github.com/viggin/domain-adaptation-toolbox
- KEMA, kernel manifold alignment: https://github.com/dtuia/KEMA/