Skip to content

Yoctol/uttut

Repository files navigation

UTTUT

travis codecov pypi release

UTTerance UTilities for dialogue system. This package provides some general utils when processing chatbot utterance data.

BERT Pipe

To create a pipe for BERT preprocessing, please take a look at BERT.

Installation

$ pip install uttut

Usage

Let's create a Pipe to preprocess a Datum with English utterance.

Build a Pipe

>>> from uttut.pipeline.pipe import Pipe

>>> p = Pipe()
>>> p.add('IntTokenWithSpace')
>>> p.add('FloatTokenWithSpace')
>>> p.add('MergeWhiteSpaceCharacters')
>>> p.add('StripWhiteSpaceCharacters')
>>> p.add('EngTokenizer')  # word-level (ref: BERT)
>>> p.add('AddSosEos', checkpoint='result_of_add_sos_eos')
>>> p.add('Pad', {'maxlen': 5})
>>> p.add(
    'Token2Index',
    {
       'token2index': {
            '<sos>': 0, '<eos>': 1,  # for  AddSosEos
            '<unk>': 2, '<pad>': 3,  # for Pad
            '_int_': 4,  # for IntTokenWithSpace
            '_float_': 5,  # for FloatTokenWithSpace
            'I': 6,
            'apples': 7,
        },
    },
)

transform

>>> from uttut.elements import Datum, Entity, Intent
>>> datum = Datum(
    utterance='I like apples.',
    intents=[Intent(label=1), Intent(label=2)],
    entities=[Entity(start=7, end=13, value='apples', label=7)],
)
>>> output_indices, intent_labels, entity_labels, label_aligner, intermediate = p.transform(datum)
>>> output_indices
[0, 6, 2, 7, 1, 3, 3]
>>> intent_labels
[1, 2]
>>> entity_labels
[0, 0, 0, 7, 0, 0, 0]

# intermediate
>>> intermediate.get_from_checkpoint('result_of_add_sos_eos')
["<sos>", "I", "like", "apples", "<eos>"] 

# label_aligner
>>> label_aligner.inverse_transform(entity_labels)
[0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 0]

transform sequence

>>> output_sequence, label_aligner, intermediate = p.transform_sequence('I like apples.')
>>> output_sequence
[0, 6, 2, 7, 1, 3, 3]

# label_aligner
>>> label_aligner.transform([0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 0])
[0, 0, 0, 7, 0, 0, 0]
>>> label_aligner.inverse_transform([0, 0, 0, 7, 0, 0, 0])
[0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 0]

# intermediate
>>> intermediate.get_from_checkpoint('result_of_add_sos_eos')
["<sos>", "I", "like", "apples", "<eos>"]

Serialization

Serialize

>>> serialized_str = p.serialize()

Deserialize

>>> from uttut.pipeline.pipe import Pipe
>>> p = Pipe.deserialize(serialized_str )