Code for C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection.
New: Pytorch version of C-MIL is avalable at here. Thanks for the contribution of shenyunhang.
- Ubuntu 16.04 LTS
- NVIDIA V100 + CUDA9.0 + CuDNN7.0
- Torch7
-
Install the dependencies
cd ./C-MIL export DIR=$(pwd) luarocks install hdf5 matio protobuf rapidjson loadcaffe xml cd $DIR/libs/functions sh install.sh cd $DIR/layers luarocks make
-
Download dataset, proposals and ImageNet pre-trained model
Download VOC2007 from: https://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar https://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
Download proposals from: https://dl.dropboxusercontent.com/s/orrt7o6bp6ae0tc/selective_search_data.tgz
Download VGGF from: https://www.robots.ox.ac.uk/~vgg/software/deep_eval/releases/bvlc/VGG_CNN_F.caffemodel https://gist.githubusercontent.com/ksimonyan/a32c9063ec8e1118221a/raw/6a3b8af023bae65669a4ceccd7331a5e7767aa4e/VGG_CNN_F_deploy.prototxt
mkdir $DIR/data mkdir $DIR/output
The data folder has the following structure:
$C-MIL/data/datasets/VOCdevkit_2007/ $C-MIL/data/datasets/VOCdevkit_2007/VOCcode $C-MIL/data/datasets/VOCdevkit_2007/VOC2007 $C-MIL/data/datasets/VOCdevkit_2007/... $C-MIL/data/datasets/proposals/ $C-MIL/data/models/ $C-MIL/data/results/
-
Train, test and evaluate
cd $DIR # train th train_cmil.lua 0 SSW # test th test_cmil.lua 0 SSW # evaluate th detection_mAP.lua 0 SSW output/path/to/scorefiles/score_test_epoch20.h5 2
Acknowledgements will be added later.