-
School of Mathematics and Statistics
- HUST, Wuhan, China
-
12:14
(UTC +08:00)
Highlights
- Pro
Lists (1)
Sort Name ascending (A-Z)
Starred repositories
HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling
本仓库持续更新【概率计算】问题及解答。主要来源是一些书、我和周围朋友面试遇到的题以及网上的零散面经中觉得还不错的题。
Free ChatGPT API Key,免费ChatGPT API,支持GPT4 API(免费),ChatGPT国内可用免费转发API,直连无需代理。可以搭配ChatBox等软件/插件使用,极大降低接口使用成本。国内即可无限制畅快聊天。
A (still growing) paper list of Evolutionary Computation (EC) published in some (rather all) top-tier (and also EC-focused) journals and conferences. For EC-focused publications, only Parallel/Dist…
推荐系统入门指南,全面介绍了工业级推荐系统的理论知识(王树森推荐系统公开课-基于小红书的场景讲解工业界真实的推荐系统),如何基于TensorFlow2训练模型,如何实现高性能、高并发、高可用的Golang推理微服务。Comprehensively introduced the theory of industrial recommender system, how to trainning …
Source code for Twitter's Recommendation Algorithm
算法岗笔试面试大全,励志做算法届的《五年高考,三年模拟》!
Minimal, clean code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.
A playbook for systematically maximizing the performance of deep learning models.
1 min voice data can also be used to train a good TTS model! (few shot voice cloning)
推荐系统入门教程,在线阅读地址:https://datawhalechina.github.io/fun-rec/
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods.
Training PyTorch models with differential privacy
Diffprivlib: The IBM Differential Privacy Library
Datasets derived from US census data
刷算法全靠套路,认准 labuladong 就够了!English version supported! Crack LeetCode, not only how, but also why.
The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
リアルタイムボイスチェンジャー Realtime Voice Changer
A framework for assessing and improving classification fairness.
An open access book on scientific visualization using python and matplotlib
This repository hosts the code behind the online book, Coding for Economists.
Causal Inference for the Brave and True的中文翻译版。全部代码基于Python,适用于计量经济学、量化社会学、策略评估等领域。英文版原作者:Matheus Facure
Causal Inference for the Brave and True. A light-hearted yet rigorous approach to learning about impact estimation and causality.