Skip to content

Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

Notifications You must be signed in to change notification settings

Peilun-Li/SG-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SG-GAN

TensorFlow implementation of SG-GAN.

Prerequisites

  • TensorFlow (implemented in v1.3)
  • numpy
  • scipy
  • pillow

Getting Started

Train

  • Prepare dataset. We present example images in datasets folder for reference as data format, and scripts prepare_data.py and segment_class.py for reference in preparing dataset.

  • Train a model:

CUDA_VISIBLE_DEVICES=0 python main.py

Models are saved to ./checkpoints/ (can be changed by passing --checkpoint_dir=your_dir).

  • Continue training a model (useful for updating parameters)
CUDA_VISIBLE_DEVICES=0 python main.py --continue_train 1

Test

  • Finally, test the model:
CUDA_VISIBLE_DEVICES=0 python main.py --phase test --img_width 2048 --img_height 1024

Adapted test images will be outputted to ./test/ (can be changed by passing --test_dir=your_dir).

Reference

About

Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages